1. Dissipation in Quantum Mechanics:
The Master Equation Approach

1.1 Introduction

This book deals with various quantum-statistical methods and their appli-
cation to problems in quantum optics. The development of these methods
arose out of the need to deal with dissipation in quantum optical systems.
Thus, dissipation in quantized systems is a theme unifying the topics covered
in the book. Two elementary systems provide the basic building blocks for
a number of applications: the damped harmonic oscillator, which describes
a single mode of the electromagnetic field in a lossy cavity (a cavity with
imperfect mirrors), and the damped two-level atom. The need for a quan-
tized treatment for the damped field mode arose originally in the context
of the quantum theory of the maser and the laser, The damped two-level
atom is, of course, of very peneral and fundamental interest, since it is just
the problem of spontaneous emission. The book is structured around these
two illustrative examples and their use in building quantum-theoretic treat-
ments of resonance fluorescence and the single-mode laser. A second volume
will extend the applications to the degenerate parametric oscillator and cav-
ity quantum electrodynamics (cavity QED.). Discussion of the examples will
guide the development of fundamental formalism. When we meet such things
as master equations, phase-space representations, Fokker-Planck equations
and stochastic differential equations, and the related methods of analysis, we
will always have a specific application at hand with which to illustrate the
formalism. Although formal methods will be introduced essentially from first
principles, in places the treatment will necessarily be rather cursory. Ample
references to the literature will hopefully offset any deficiencies.

Qur objective in this book is to develop the background needed to gain ac-
cess to issues of current research. The statistical methods we will cover were
introduced over approximately two decades beginning in the early 1960's,
stimulated by the invention of the laser. They are characterized by an empha-
sis on the two extremes of statistical physics — the single particle (resonance
fluorescence) and very many particles (the single-mode laser). Where possi-
ble, they exploit analogies with the methods of classical statistical physics,
though the incompatibility of a classical description with quantum mechanics
ig, in principle, always present. In the second volume we will enter into some
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of the modern research topics. The objective there will be to extend the meth-
ods discussed in this book, to move away from the one- and many-particle
extremes and to face the qnantum-classical incompatibility head on.

1.2 Inadequacy of an Ad Hoc Approach

In classical mechanics the essential features of dissipation, namely, the decay
of oscillator amplitudes, particle velocities and energies, can be b;zilt into the
theory by the simple addition of a velocity dependent, foree, For example, the
harmonic oscillator, with Hamiltonian

2

P
H = e + %mwzqz {1.1)

and equations of motion

Gg=p/m,  p=-muiq, (1.2)
b'ecomes a damped harmonic oscillator with the addition of the force —vp to
give

g=p/m,  p=—yp-muiq (1.3)

or the familiar equation
G+vq+wlg=0. (1.4)
Can we simply transfer this approach to the quantized harmonic oscillator?
For the quantized oscillator ¢ and p become operators, § and p, and (1.2)

g‘%ves the Heisenberg equations of motion obtained from Hamiltonian (1.1)
via the commutation relation

l4,p] =ih. (1.5)
Aftel: adding —vp to (1.3), the equations of motion remain linear; thus, the
cla.?su:ai solution still holds when g and p become operators, and the expec-
tation values of ¢ and j will be damped in the same way as the classical

variables. We seem to be in good shape. Consider, however, the evolution of
the commutator [§, p]. From (1.3)

d . 4 ; 4
2107 = ap+dp —pd—pq
— _T[qp!ﬁ}v
and
[4(2), (8)] = e~ "[§(0), 5(0)] = e~ "1k (1.6)

As a consequence of this decay of the commutator the Heisenberg uncertainty
also decays; the Heisenberg uncertainty relation becomes
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Aqlp > Fhe . (1.7)

In the face of this difficulty there have been various attempts to con-
sistently incorporate dissipation into quantum mechanics. Some approaches
based on novel quantization procedures remain controversial. We will not
review these issues here. Of course, in many of the traditional domains of
quantum mechanics dissipation plays no role: in the analysis of atomic struc-
ture, or the caleulation of harmonic oscillator eigenstates and the like. The
situation is quite different, though, in quantum optics. For example, the phe-
nomenon of laser action, which gave birth to this field, takes place in a lossy
cavity. In fact, applications in quantum optics have played a central role in
developing methods to treat quantum-mechanical dissipation. We follow the
widely accepted approach pioneered by Senitzky [1.1] for deseribing lossy
maser cavities. Some discussion of alternative points of view can be found in
papers by Ray [1.2] and Caldeira and Leggett [1.3], and references therein.

1.3 System Plus Reservoir Approach

The system plus reservoir approach begins from a microscopic view of the
mechanism underlying dissipation. Although the procedure leading to (1.3)
and (1.4) is often adequate in classical mechanics, even there it provides an
incomplete description. In particular, equations (1.2) are time-reversal invari-
ant, while in (1.3) this symmetry has been broken. If we want to understand
the origin of this irreversibility we must begin by recognizing that the oscil-
lator is damped through interactions with a large and complex system — its
environment. This recognition also leads us to the fundamental relationship
between dissipation and fluctuations. If the environment is some large system
in thermal equilibrium, it will exert a fluctuating force F() on an oscillator
coupled to it, in addition to soaking up the oscillator’s energy. Equation (1.4)
must generally be replaced by a stochastic equation

i+ v +wq = F(t)/m. (1.8)

In many situations the added noise source cannot be overlooked — in electrical
circuits, for example.

We observe that damping takes place through the coupling of the damped
gystem to its environment. Is there anything in this observation to suggest a
resolution of our problem with commutators? Well, the interaction between
systems mixes their operators in a way which certainly does play a role in pre-
serving commutators in time. Consider resonant harmonic oscillators coupled
in the rotating-wave approximation. The Hamiltonian is

H = hwa'a + liwb'h + hik(a’d + ab?), (1.9)
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where w is the frequency of the oscillators, & is a coupling constant, af and
b! are creation operators, and a and b are the corresponding annihilation
operators, satisfying commutation relations

la,af]=1,  [b,bf]=1. (1.10)

Note 1.1 To understand the origin of the Hamiltonian (1.9) first note that
the free oscillator Hamiltonian (1.1) becomes

H = hw(ata+ 1) (1.11)
where %ﬁw is the zero-point energy, under the transformation
1
a= G+ ip), 1.
m(ﬂwq ip) (1.12a)
1
al = mwg — 1p). 1.12b
m( G — ip) (1.12b)
Then (1.6) becomes
[a,at] = e, (1.13)

In the rotating-wave approzimation an interaction energy proportional to §,dy
gives the interaction Hamiltonian firk(atb + ab?) after the highly oscillatory
terms (energy nonconserving terms) ab and atb' are neglected.

The solutions to the Heisenberg equations of motion following from (1.9)
are

a(t) = e~ **[a(0) cos xt — ib(0) sin «t], (1.14a)
b(t) = e~ ™ [b(0) cos Kt — 1a(0) sin k). (1.14b)

Then
[a(t),a'(t)] = [a(0), a' (0)] cos® kt + [b(0), bT(0)] sin® Kt = 1. (1.15)

We sce that the commutator for a(t) and af(1) is preserved in time only by
the presence of the operator b(0) mixed inte the solution for a(t). Taking
the environmental interaction into account in the treatment of dissipation,
we might anticipate a similar mixing of environmental operators into the
operators of the damped system in such a way as to preserve commutation
relations. This is precisely what Senitzky found [1.1]. The fluctuating force
in (1.8) becomes an operator in Senitzky’s theory. Contributions from this
environmental operator in the solutions for ¢(t) and $(t) introduce thermal
Auctuations, and also preserve the commutation relations.

The master equation method we now discuss is essentially a Schrédinger
picture version of Senitzky’s theory. It is somewhat less transparent on this
point about preserving commutation relations, so it is valuable to study Sen-
itzky’s calculation in the Heisenberg picture as well as the following. In both
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the philosophy is to model environmental interactions by coupling the un-
damped system S to a reservoir R, beginning with a Hamiltonian in the

general form
H=Hs+ Hg + Hgr, (1.16)

where Hg and Hp are Hamiltonians for § and R, respectively, and Hgr
is an interaction Hamiltonian. The reservoir is only of indirect interest, and
its properties need only be specified in very general terms; for example, by
a temperature and an energy density of states. For illustrative purposes we
will give Hg and Hgg an explicit form once we get a little further into the
calculation.

The derivation given here follows the treatments by Louisell [1.4] and
Haken [1.5] fairly closely. There are some minor differences in the way ap-
proximations are introduced, and no attempt is made to follow either author’s
notation. A rather different and more specialized approach is taken by Sar-
gent, Scully and Lamb [1.6]. These authors get away without having to deal
with the complicated frequency and time integrals we will meet in our cal-
culation. Tt is a useful exercise to study their calculation and try to find
where they introduce the physical assumptions we will use to deal with these
integrals. The physics must, of course, be the same.

We are seeking information about the system S without requiring detailed
information about the composite system S@R. We will let x(t) be the density
aperator for S @ R and define the reduced density operator p(t) by

p(t) = trrlx(®)], (1.17)

where the trace is taken over the reservoir states. Clearly, if O is an operator
in the Hilbert space of § we can caleulate its average in the Schrodinger
picture if we have knowledge of p(t) alone, and not of the full x(t):

(0) = trserlOx(t)] = trs{Otralx(]} = trs[Op(®)].  (1.18)

Our objective is to obtain an equation for p(t) with the properties of R
entering only as parameters.

1.3.1 The Schriodinger Equation in Integro-Differential Form
The Schrédinger equation for y reads
-

where H is given by (1.16). We transform (1.19) into the interaction picture,
separating the rapid motion generated by Hg + Iy from the slow motion
generated by the interaction Hsg. Defining

F(t) = eC/MUHsHHR)y (1) o=/ R Hs+Hr)t (1.20)
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from (1.16) and (1.19), we obtain
. i i
% = 3 (Hs + Hp)% ~ %2( Hg + Hp) + el/PHs+Hr)tg o= (/B) Ho+Hr)t
1, - &
= E{Hsﬁtt)lxll (1.21)
where Hgg(t) is explicitly time-dependent:
Hgp(t) = e(i/’!)(ﬂﬂﬂx)iHSRE-(W)(HHHR){ (1.22)
We now integrate (1.21) formally to give
. It e
#(0) = x(0) + 35 [ @ Fon(®), x(0), (1.23)
0
and substitute for %(t) inside the commutator in (1.21):
s 1 !‘-I I 1 . ! [T ry o=l
x = ZlHsr(t), x(0)] - 7/, dt’' [Hsg(t), [Hsr(t'), %(t")]). (1.24)

This equation is exact. Equation (1.19) has simply been cast into a convenient
form which helps us identify reasonable approximations.

1.3.2 Born and Markov Approximations

We will assume that the interaction is turned on at ¢ = () and that no correla-
tions exist between S and R at this initial time. Then x(0) = ¥(0) factorizes
as

x(0) = p(0)Ro, (1.25)
where Ry is an initial reservoir density operator. Then, noting that
trr[%(t)] = e/t p(t)e=(/MHst = jig), (1.26)

after tracing over the reservoir, (1.24)-gives the master equation

b= ]0 dt’ teg{[Hsr(t), (Asr(t), %O}, (127)

where, for simplicity, we have climinated the term (1/3R)trp{ [Hsr(t) x(0)]}
with the assumption ,

trr[Hsr(t)Ro] = 0. (1.28)

This is guaranteed if the reservoir operators coupling to § have zero mean in
the state Ro, a condition which can always be arranged by simply including
trr(HsrRo) in the system Hamiltonian (see Sect. 2.2.4 and Note 8.8).

We have stated that ¥ factorizes at ¢ = (. At later times correlations
between S and R will arise due to the coupling between the system and
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the reservoir. We have assumed, however, that this coupling is very weak,
and at all times y(t) should only show deviations of order Hgg from an
uncorrelated state. Furthermore, R is a large system whose state should be
virtually unaffected by its coupling to S (of course, we expect the state of §
to be significantly affected by R — we want it to be damped). We therefore
write

X(t) = p(t)Ro + O(Hsr). (1.29)
Now we can make our first major approximation, a Born approzimation.
Neglecting terms higher than second order in Hgp, we write (1.27) as

=g [ @ enllfisn(0), Hon®). AOR). (130

A detailed discussion of this approximation can be found in the work of Haake
(1.7, 1.8].

Equation (1.30) is still a complicated equation. In particular, it is not
Markovian since the future evolution of j(t) depends on its past history
through the integration over p(t') (the future behavior of a Markovian sys-
tem depends only on its present state). Our second major approximation, the
Markov approzimation, replaces i(t') by (t) to obtain a master equation in
the Born-Markou approzimation:

=g [t sen{Hsn(®), Ao PORSN). (130)
]

1.3.3 The Markov Approximation and Reservoir Correlations

Markovian behavior seems reasonable on physical grounds. Potentially, S
can depend on its past history because its earlier states become imprinted
as changes in the reservoir state through the interaction Hgpg; earlier states
are then reflected back on the future evolution of S as it interacts with the
changed reservoir. If, however, the reservoir is a large system maintained
in thermal equilibrium, we do not expect it to preserve the minor changes
brought by its interaction with $ for very long; not for long enough to sig-
nificantly affect the future evolution of S. It becomes a. question of reservoir
correlation time versus the time scale for significant change in S. By studying
the integrand of (1.30) with this view in mind we can make the underlying
assumption of the Markov approximation more explicit.
Let us make our model a little more specific by writing

Hsp=h) sl (1.32)

where the s; are operators in the Hilbert space of S and the I are reservoir
operators, operators in the Hilbert space of R. Then
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Hsp(t) = Y C/MHsHHR) g, 1y o=G/B)(Hs+ Ha)t
- hz (ewﬁmsr 3‘,3—(#&);:5:)(3(*/&11;3: m—(iznwna)
=# E 5(0)Ti(t). (1.33)
The master equa.t.im: in the Born approximation [Eq. (1.30)] is now
p=-5 f a tea {5 )T, 5 () T5(0), e ol
-3/ {505, enl O () Rl
e sit)ﬁ(t’)s*j{t’)tra[ﬂ-(t)RuI'}(t’)] — 3(t")p(t)5i(2)
xter[F5(#) RoFy(6)) + A(E)3;(t')3:(8) tralRo T3 (#) Ti(0)] }
=- Z, [D t at'{[5:0)3;¢)at') - 55(€)p( s OURO T ()
+A()3,()3(0) - HOMEEONS T} (1.34)

where we have used the cyclic property of the trace - tr(fiﬂf}’) = tr( nflﬁ) =
tr(BCA) - and write

(LTt = trr[RoLi(t) I ()], (1.35a)
(Ly(¥') F3())r = trr[RoT3 () Ii(t))]. (1.35b)

The properties of the reservoir enter (1.34) through the two correlation func-
tions (1.35a) and (1.35b). We can justify the replacement of (t') by a(t) if
these correlation functions decay very rapidly on the timescale on which j(t)
varies. Ideally, we might take

(BT3¢ )k o< 6(t — 1) (1.36)

The Markov approximation then relies, as suggested, on the existence of two
widely separated time scales: a slow time scale for the dynamics of the system
8, and a fast time scale characterizing the decay of reservoir correlation fune-
tions. Further discussion of this point is given by Schieve and Middleton [1.9].
We will look explicitly at reservoir correlation functions and the separation
of time scales in our first example.

roCoswm o
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1.4 The Damped Harmonic Oscillator

1.4.1 Master Equation for the Damped Harmonic Oscillator

‘We now adopt an explicit model. For the Hamiltonian of the composite system
S @ R we write

Hg = hwoa'a, (1.37a)

Hp =) hwrsir, (1.37Db)
i

Hgp = Z fi,(x;farj‘ + kjalr;) = Klal't + ot ). (1.37c)
J

The system S is an harmonic oscillator with frequeney w; and creation and
annihilation operators al and a, respectively; the reservoir R is modeled as
a collection of harmonic oscillators with frequencies w;, and corresponding
creation and annihilation operators 7;1 and r;, respectively; the oscillator
a couples to the jth reservoir oscillator via a coupling constant x; in the
rotating-wave approximation. We take the reservoir to be in thermal equilib-
rium at temperature T, with density operator

Ry = He—’*”fﬁ'*’s‘f’“ﬂ”(l - e—"“’/"ﬂ""), (1.38)
3
where kg is Boltzmann’s constant. It is not necessary to be so specific about
the reservoir model. Haken [1.5], for example, keeps his discussion quite gen-
eral. Aside, however, from its pedagogical clarity, the oscillator model is phys-
ically reasonable in many circumnstances. The reservoir oscillators might be
the many modes of the vacuum radiation field into which an optical cavity
mode decays through partially transmitting mirrors, or into which an excited
atom decays via spontaneous emission; alternatively, they might represent
phonon modes in a solid.
The identification with (1.34) is made by setting

s1=a, sa =al, (1.39a)
n=rt=Y sr", nR=r=s) sy, (1.39b)
i i
and then from (1.33) and (1.37), the operators in the interaction picture are

51(8) = eiwun'atae—-inma‘at = ge~twot (1.402)

(1) = piwanlot ot —iwpatat _ ateiwot (1.40b)

and
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Iy(t) = I'(t) = exp (z' 3 unrﬂrr“t) Z rirstexp (—i Z wmrmfrmt)
n J m

=D _wjrytes, (L41a)
;
Do(t) = I'(t) = exp (z' E w“r“?r“t) Z K75 eXp (—i E wmrm'rmt)
L2 k] m
=D Kyrie (1.41b)
i

where in (1.41) we use the fact that operators for different reservoir oscillators
commute. To show, for example, that eiwoe'atge—ivoa’at — po—iwot oheerve
that the left hand side is just the formal solution to the Heisenberg equation
of motion @ = —iwpla,a’a] = —iwga. Note that, from (1.38) and (1.41),
(I1(t))r = (I2(t))r = 0, as required by the assumption (1.28).

Now, since the summation in (1.34) runs over i = 1,2 and j = 1,2, the
integrand involves sixteen terms. We write

p=- /(, tdt'{ [aap(t’) — ap(t')a) e~ (PH@) PH1'))g + hec.
+[atal 5(t') — ol p(#")al] eV F(8)F(t)) + hc.
+[aalp(t') — at p(t")a] e et ) P(t'))g + hec.
+[atap(t’) — ap(t’)a'] e"““““‘“(f(t)f"(t')}g + h.c.}, (1.42)
where the reservoir correlation functions are explicitly:

(CHOPNE)a =D kjrie™ste™ trp(Rorstrit) = 0, (1.43)
3.k

(POD(E)r = kjrpe " ste ™ trp(Rorjre) =0,  (1.44)

ik
(DI )R =) kjrretste ™ trp(Ror;try)
ik
s Z Jnjl‘zei;aj(h—-t')ﬁ(wj’T), (1.45)
3
(ﬁ(t)f‘t(f))ﬂ = Z -‘Cj»‘i;:e_wftem*t'trn[ﬂgrjrﬂ]
I
=Y |r;2e s [fi(wy;, T) + 1], (1.46)
3

with




1.4 The Damped Harmonic Oscillator 11

t B—ﬁw;/ka?"
ﬁ(w_,, T) = ttR(RuT‘j r_,-) — 1—_—;:3;‘17-’;;? (1.47)

The correlation functions (1.43)—(1.46) follow quite readily by evaluating the
trace using the multimode Fock states as a basis. fi(w;, T') is the mean pho-
ton number for an oscillator with frequency w; in thermal equilibrium at

temperature T .
The nonvanishing reservoir correlation functions (1.45) and (1.46) involve

a summation over the reservoir oscillators. We change this summation to an
integration by introducing a density of states g(w) such that g(w)dw gives the
number of oscillators with frequencies in the interval w to w + dw. Making
the change of variable

r=t—t, (1.48)

(1.42) can then be restated as
p= —];tdv{[aafﬁ[t —7)—afp(t - T)a.} e~ o (Ft@)[(t — 7))r + h.c.
+ [a‘aﬁ(t —7)—ap(t— 'r]a'] T (Pt = 7)r + h.c.}., (1.49)
where the nonzero reservoir correlation functions are
(FOFE~rhn = [ doeg(w)lnw)i(w,T), (1.50)

(PPt - 7))r = fo dw e g(W) kW) PR, T) + 1), (151)

with o~Fw/ksT

ﬁ(w,T) = rm (152)

We can now argue more specifically about the Markov approximation. Are
(1.50) and (1.51) approximately proportional to 6(#)? We can certainly see
that for 7 “large enough” the oscillating exponential will average the “slowly
varying” functions g(w), |s(w)|?, and fA(w,T) essentially to zero. However,
how large is large enough? Can we get some idea of the width of these cor-
relation functions? Let us look at (1.50), taking g(w)|k(w)[? = Cw, with
C a constant. This correlation function may be evaluated in terms of the
trigamma function [1.10]:

S e 0 e—hwfksT
(F*(t)f‘{t - T}}R — CA dw ﬂinI'_—e_*E;?'kB—T

00 ~(1—iTftr)z
= Cig? f dree
0

1—er®

= Ct3% (1 — it ftg), (1.53)

12 1. Dissipation in Quantum Mechanics: The Master Equation Approach

where we have defined the reservoir correlation time tg = h/kgT. A simple
approximation gives some insight into the behavior of the trigamma function.

Set . fon

we™ & 8L _pufksT.

1_e—hwfksT ~ p © Ll (1.54)
then

5 s kgT
(PO =~ OB [ dweioretotha
—g L+it/ig
DR LR 1.55

R 1 (7/tn)? (1.55)
The a.ppromma.tmn is accurate for low frequencies, but is not so good for
w~ kgT/h=1g R ; here the error is ~ 40%. It is adequate, nevertheless, to
give us a feel for the qualitative behavior of the reservoir correlation function.
Actually, the exact result for the real part of the correlation function can be
computed with little effort using the formula [1.10]

Re[y'(1—i7/tg)] = §7°[1 — coth®(n7/tg)] + §(r/tr) > (1.56)
The exact result is plotted together with the real part of (1.55) for comparison
in Fig. 1.1(a).
20
(b)
= 18 =
o &
L =
5 &
I 10k A
g s
2 os 3 '
00! 3 AR TR
0.0 20 40 ' 20 40

Tfiﬂ T.’*R

Fig.1.1 (a) Real part of the reservoir correlation function for g(w)|s(w)[* = Cw
plotted from (1.56) (solid line) and (1. 55) (da.-ahed line). (b) Real part of the reser-
voir correlation function for g(w)|s(w)|? = Cw® plotted from (1.61) (solid line) and
(1.60) (dashed line).

Equation (1.55) indicates a correlation function peaked about 7 = 0 with
a width tg = A/kgT. In (1.49) the reservoir correlation functions are inte-
grated against two time-dependent terms: j(t —7) and e**°7, Now, at room
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temperature fi/kpT = 0.25 x 10~ 3s. If the oscillator a represents an optical
cavity mode, we expect fi(f — ) to vary on the time scale of a typical cavity
decay time, ts ~ 10~ 8s; and if wy is an optical frequency, e**7 oscillates on
a time scale to ~ 10~ !%s. Then, since tg/tg ~ 10° it seems we can justify the
Markov approximation and replace p(t — 7) by p(t). But, with to/ig ~ 1072,
we cannot set 7 = 0 in the terms e*™°7. Rather, integrating the reservoir cor-
relation functions against these oscillating terms will extract the wp frequency
component of the correlation funciions, as in a Fourier transform.

After taking a closer look we might be a little worried about the imaginary
part of (1.55). This has a long fail which decays as (7/tr)"; the integral of
this tail is logarithmically divergent; far out in the tail the replacement of
p(t—7) by p(t) will not be justified. It is, however, the wp frequency component
of the product j(t — 7)(I''(t)I'(t — 7))r that survives the integral in (1.49),
and with 1y < tg << tg this frequency component is contributed by the
short-time behavior of (1.55) where the replacement of p(t — 7) by p(t) is
justified.

In fact, the divergent tail is a consequence of the form we have chosen for
g(w)&2(w). More generally, if we take g(w)|x(w)[* = Cw", with n a positive
integer,

n—1

(PO~ = (—i)" ey (O (1 — ir/tw)]
= Ctp" D (=1)"" 1™ (1 — ir/tR), (1.57)

where the (™ are the polygamma functions [2.10]. In the approximation

(1.54)

(P OF( =) = (—i)" [ 2 1+sr/tﬂ]

dr*=1 | 7R 1 4 (r/tR)?
! 14ir/tg

=0t e 1 (e 09
For 7/tg >> 1 the asymptotic form of the polygamma function gives
(PO —7))p ~ — Ct;(ﬂ-}-l)[ini-l(ﬂ - 1)!][15,,1(,.‘;&)—(%1)
- i(‘-"/ta}_"] ; (1.59)

which has no (7/tg)™" tail forn > 1.

The case n = 3 is of special interest since this corresponds to the form
of g(w)|k(w)|? that we will meet when we apply our theory to the damped
two-level atom (Sect. 2.2). The approximate result (1.58) gives

— _42[1 = 3(r/ta)?] +i2(z/tr) [3 — (v/tr)?]
(LN -7)r =~ Ct7’ 0+ G /i)

. (1.60)
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For comparison with the real part of this result, the real part of the exact
correlation function can be computed from (1.57) using the formula

Re[p® (1 —ir /tR)] =m*[1 — coth®(n7/tg)][1 - 3coth®(nr/tR)]
— 3(1’/{,2)—4. [1‘61)

This formula is obtained by taking two derivatives of (1.56). The exact and
approximate results for the real part of the correlation function are plotted
in Fig. 1.1(b). Again the correlation function is peaked around 7 = 0 with
a width ~ tp. The approximate correlation function (1.60) explicitly shows
the (1/tg)™* and (7/tg) ™" dependence for the real and imaginary parts,
respectively, in the large 7 limit, as given by (1.59).

Exercise 1.1 Consider the correlation function (1.51). The second term in-
side the square bracket comes from quantum (vacuum) fluctuations. Tt arose
from our use of the boson commutation relation in the derivation of (1.46).
What contribution does this term make to the correlation function?

Continuing our derivation now from (1.49), it is actually more straight-
forward to evaluate the time integral first, without performing the frequency
integrals to obtain an explicit form for the reservoir correlation functions.
This is possible now we are satisfied that the 7 integration is dominated by
times that are much shorter than the time scale for the evolution of 5. With
p(t — ) replaced by j(t) (Markov approximation), (1.49) becomes

#=c(apal — alap) + Blapal + ol pa— atas— paal) + h.e., (1.62)
with
2 oo
= fo i /n dr &= E=90)7 g () ()P, (163)
13 =]
p= fo dr jﬂ duo €=~ () ) P, ). (1.64)

Then, since t is of the order of t5 and the 7 integration is dominated by much
shorter times ~ tp, we can extend the 7 integration to infinity and evaluate
a and 3 using

;4
lim / dr e =0T — (1w ~ wp) + 4 = 3 (1.65)
t=oo o wp — w
where P indicates the Cauchy principal value. We find
o = mg(uwo) o) ? + 84, (1.66)
B = ng(wa)|k{wo)[*Alwo) +i4', (1.67)

with
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A=P f dug(i"i"")'z, (1.68)
=P / wgf‘i”i(w (w, T). (1.69)

Note 1.2 To obtain (1.65), we have

td,_,. s—i(u—w)r o Sin(w i wﬂ}t _ il =t COS(!‘.J - h}ﬂ)ﬂl
o W= W —wp

The limit as t tends to infinity is defined anticipating the role of the right-
hand side inside an integration over w, thus:

i "f;?( Sl — )t ) Jim [~ Mw
S sy, =mflwe)  (resdo Hene
A - /::dwﬂﬁ(w—wo)f{w);
also
i [ Zdwf(w)——l s S
/ i J), t_w[m (w)coso:}o wp)t
B f w 16

where the term
lim

t—oo

/ di L (@) cos(w — wo)t flw) coa(u wo)t

subtracts the singularity at w = wq to give the pnnmpa.l value integral [1.11].

We finally have our master equation for the damped harmonic oscillator.
After defining

~ = 2mg(wo) k(wo)?, (1.70a)
7 = fiwo, T), (1.70b)

from (1.62), (I.ﬁﬁ}, and (1.67), we obtain
=—iAla'a, p] + (2ap&1 atap — pa'a)
+ 'm(apa +afpa—alap— paal). (1.71)

Here f is still in the interaction picture. To transform back to the Schrodinger
picture we use (1.26) to obtain
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1
e [ G/R)Hst 5 (i/R)Hst :
p= 5 Hs,p] +e6/PHste (172)

With Hs = hwoa'a, we substitute for 5 and use (1.26) and (1.40) to write,
for example,

_ 1 ~ t —iweal s ! —tuwnat oot
e iwpa atapafeia.roa at _ e~ iwoa a!a(ew:oa. a:pe iwoa ul'.) a‘lewua at

= (e—iwaa'ntaeiwga'at)p(e—wnn'utﬂfewaa‘at)
=apal.

Each term can be treated similarly. We arrive at the master equation for the
damped harmonie oscillator

p =—iwplata, p] + %{20;30* —atap — pa'a)

t

+yA(apal 4+ atpa — alap — paal), (1.73)

where
wy = wp + A. (1.74)

Note 1.3 An alternate, more compact, writing of the master equation (1.73)
may be given in the form

p=—iwplata,p] + 7 ([a, pa'] + [ap,a)
+ Zi((ap,a'] + [a', pa)). (1.75)

In both this form and (1.73) the damping terms are grouped according to
whether they are propotional to 7 or not. This is a natural grouping from the
point of view of the phase-space representations commonly used in quantum
optics which we meet in Chaps. 3 and 4 [see (3.47), for example, where the
terms proportional and not proportional to #2 have distinet physical interpre-
tations], Nowadays, it is more usual to group the terms so that the Lindblad
form of the master equation is explicit [1.12], writing

p =~ iwpla'a, p] + 7(7 +1)(2apa’ — a'ap — pa'a)
+ %ﬁ(Qaﬁpa —aalp — paal). (1.76)

Here the physical interpretation follows from the rate equations satisfied by
the probabilities p,, = (n|p|n) for the oscillator to be found in its nth energy
cigenstate:

Pn =R+ 1)(n + 1)ppy1 — yAinPn
+ yAinp,.1 — yA(n + 1)p,. (1.77)
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The terms on the right-hand side of (1.77) describe transition rates into and
out of the nth energy level (see Fig. 7.4) and originate, respectively, in the
terms proportional to 2apat, —(alap + pata), 2! pa, and —(aalp + paal) in
(1.76) [also see the discussion below (2.27) and (2.36d)].

Note 1.4 There is a large literature on the treatment of dissipative quantum
systems using semigroups, from which the work of Lindblad on the form of
the generator for physical semigroup dynamics [1.12] is a result of particular
relevance to quantum optics; thus, the master equations we met in this book
are all of Lindblad form. The foundational work of Davies [1.13] has also
been influential in quantum optics, particularly in relation to the theory of
photon counting [1.14]. We will have more to say about this topic when we
discuss quantum trajectories in Volume IT (Chaps. 15 and 16). More gener-
ally, the orientation in the literature on semigroups is towards the proof of
rigorous mathematical results and hence the connections to quantum optics
applications are somewhat indirect.

1.4.2 Some Limitations

Equation (1.73) is one of the central equations for future applications. Before
proceeding we should note its limitations as a general equation for the damped
harmonic oscillator.

First, it is derived in the rotating-wave approximation (R.-W.A.). We ex-
pect this to be a good approximation for oscillators at optical frequencies
[1.15], but for low frequency oscillators (strong damping, where the decay
time approaches the oscillator period) we would not expect the R.W.A. to
work well. In fact, even at optical frequencies the R.W.A. brings one notable
inaccuracy. The frequency shift A in (1.74) is small, and generally neglected.
However, in the example of the damped two-level atom this is the Lamb shift,
and it is therefore of fundamental importance. Of course, an accurate calcula-
tion of the Lamb shift must include many things that we do not discuss - for
example, relativistic effects. Nevertheless, it is as well to know that the (two-
level) nonrelativistic contribution to the Lamb shift is not obtained correctly
when the master equation is derived using the rotating-wave approximation.
A derivation that does not use the R.W.A. is quite straightforward and pro-
ceeds along the same lines as the calculation in Sect. 1.4.1. The details are
given by Agarwal [1.16, 1.17], who, in Ref. [1.17] in particular, discusses the
question of the frequency shift.

Secondly, (1.73) is not valid at low temperatures. At sufficiently low tem-
peratures the reservoir correlation functions can no longer be treated as é-
functions. There is quite an active interest in this low temperature regime.
Discussions can be found in recent papers by Caldeira and Leggett [1.3],
Lindenberg and West [1.18], and Grabert et al. [1.19)].
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1.4.3 Expectation Values and Commutation Relations

Let us make some simple checks to see if (1.73) predicts the behavior we
expect from a damped harmonic oscillator. Since we have formulated our
theory in the Schrodinger picture, we cannot obfain solutions for the oper-
ators themselves, but only for their expectation values. For example, if we
multiply (1.73) on the left by a and take the trace (over the system S) we
obtain an equation for (a} = tr(ap):
(&) = — iwp tr(aatap — apata) + % tr(2a°pa’ — aatap — apa'a)
+yntr(a®pal + aa’pa — aatap — apaal)
= — iwp tr[(aa’ — a'a)ap] + g tr[(a'a - m‘)ap]
- B
+yatr[(ala — aal)ap + alaa’ —ala)p] _, Vot

= — (2 +iw0) o), i (1.78)

where we have used the cyclic property of the trace and the boson commu-
tation relation (1.10). From now on we assume that the frequency shift A is
included in the resonance frequency of the oscillator and do not distinguish
wh from wy. Equation (1.78) correctly describes the damped mean oscillator
amplitude.
As a second example consider (7)) = (a'a):
(A) = — iwg tr(a'aalap — atapata) + % tr(2ata®pat — alaalap
—alapata) + yntr(a'apat + a'aa' pa — a'aalap — atepaat)
= ytr{at?a®p - (ala)?p)
+ vy tr[a'?a®p + (aat)?p — (ata)?p — aat?ap)
=-7((”) —n), (1.79)
with the solution
(A(t)y = (A0)ye™ " + Al —e ). (1.80)
Notice how thermal fluctuations are fed into the oscillator from the reservoir;
the mean energy does not decay to zero but to the mean energy for an
oscillator with frequency wp in thermal equilibrium at temperature T'.
Exercise 1.2 Show that the thermal equilibrium density operator
o—Hs/ksT e—fwoata/ksT
Pag:= tr(e—H,-;/kB’I‘) T 1— e hwo/ksT

mor
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satisfies (1.73) in the steady state.

As a final observation we note that the boson commutation relation is
preserved in time — at least in the mean, which is all we can say in the
Schrédinger picture. Using the initial time commutator we find

(la,a")(®)) = tr{la, a')o(t)} = tr{p(®)} = 1;

it is readily shown that (1.73) preserves the trace of the density operator.

1.5 Two-Time Averages
and the Quantum Regression Theorem

We have developed a formalism which allows us, in principle, to solve for the
density operator (reduced density operator) for a system interacting with a
reservoir. From this density operator we can obtain time-dependent expec-
tation values for any operator acting in the Hilbert space of the system S.
What, however, about products of operators evaluated at two different times?
Of particular interest, for example, will be the first-order and second-order
correlation functions of the electromagnetic field. For a single mode these are
given by
Gt + 1) o (al (t)a(t + 7)),

Gt + 1) (' ()al(t +)alt + T)a(t)).

The first-order correlation function is required for calculating the spectrum
of the field. The second-order correlation function gives information about
the photon statistics and describes photon bunching and antibunching.

Note 1.4 It may seem a strange talking about the spectrum of a single
mode field since we normally associate a single mode with a single frequency.
Here we are dealing, however, with what should more correctly be called a
quasimode — a mode defined in a lossy optical cavity, which therefore has a
finite linewidth.

Clearly, averages involving two times cannot be calculated directly from
the master equation — at least, not without a little extra thought, We need to
return to the microscopic picture of system plus reservoir. At this level two-
time averages are defined in the usual way in the Heisenberg representation.
Our objective, then, is to derive a relationship that allows us to calculate
these averages at the macroscopic level using the master equation for the
reduced density operator alone; thus, in some approximate way we wish to
carry out the trace over reservoir variables explicitly, as we did in deriving
the master equation itself. The result we obtain is known as the quantum
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regression theorem and is attributed to Lax [1.20, 1.21]. We will not follow
Lax in detail, but our method is fundamentally the same as his.

1.5.1 Formal Results

Recall our microscopic formulation of system S coupled to reservoir £. The
Hamiltonian for the composite system S @ R takes the form given in (1.16).
The density operator is designated y(¢) and satisfies Schrédinger’s equation
(1.19). Our derivation of the master equation has given us an equation for
the reduced density operator (1.17), which we will now write formally as

p=Lp; (1.81)

L is a generalized Liouvillian, a “superoperator” in the language of the
Brussells-Austin group [1.22]; £ operates on operators rather than on states.
For the damped harmonic oscillator, from (1.73), the action of £ on an arbi-
trary operator O is defined by the equation

L0 = —iwplata, 0] + %(2&0&' —a'a0 — Oata)
+~ii(aOat! + a'Oa — a'al — Oaa'). (1.82)

Within the microscopic formalism multi-time averages are straightfor-
wardly defined in the Heisenberg picture. In particular, the average of a
product of operators evaluated at two different times is given by

(O1(1)02(t) = trser[x(0)0: (1)0a(t')], (1.83)

where O; and Oy are any two system operators, These operators satisfy the
Heisenberp equations of motion

Oy %[GI,HJ, (1.842)
0a= 10, H), (1.84b)
with the formal solutions
04 (t) = el/MHLH, (0)e~ /ML, (1.85a)
Oa(t') = e/RHL (5, (0)e~(/MHL, (1.85b)

From (1.19), the formal solution for y gives
x{0) = ef/MEy(1)g= /ML, (1.86)

We substitute these formal solutions into (1.83) and use the cyclic property
of the trace to obtain
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((‘)1 (t]ég(f’:]) = trser [e(i}h)Htx(t)Ol (O}E(i/E]H(g' _a)oa(o}e—(rﬁf&)ﬁy]
= trggr [05(0)e™/MHE=0x(1)0y (0)e/MHC 1]

= trs{ég (0)trp [e_{"m)H(‘L‘)x(t)ol (O)e("/ﬁ)m"")}} ¢
(1.87)

In the final step we have used the fact that Oy is an operator in the Hilbert
space of S alone,
We now specialize to the case t’ > ¢ and define

=t —t, (1.88)
xéafT) = e—(i/ﬁ)l‘fr‘x(t}él(O)E(t‘}ﬁ.)ﬁr_ (1.89)
Clearly, X6, satisfies the equation
dxs, 1
ar i [H’ Xoi] (1.90)
with
X5,(0) = x(t)01(0). (1.91)

If we are to eliminate explicit reference to the reservoir in (1.87), we need to
evaluate the reservoir trace over xal('r) to obtain the reduced operator

po ) = tra[xe, (7)), (1.92)
where
£,0) = tralx(t)01(0)] = bralx(£))01(0) = p(t)O2(0); (1.93)

notice that p, (7) is just the term trg[-- ] inside the curly brackets in (1.87).
1

If we then assume that x(t) factorizes as p(t) Ry, in the spirit of (1.29), from

(1.91) and (1.93) we can write

X5,(0) = Rolp(1)01(0)] = Ro p,, (0). (1.94)

Equations (1.90), (1.92), and (1.94) are now equivalent to (1.19), (1.17), and
(1.25) — namely, to the starting equations in our derivation of the master
equation. We can find an equation for Po,("") in the Born-Markov approxi-
mation following a completely analogous course to that followed in Sects. 1.3
and 1.4. Since (1.19) and (1.90) contain the same Hamiltonian H, using the
formal notation of (1.81), we arrive at the equation

T 'Cp{jx: (195)

with solution

22 1. Dissipation in Quantum Mechanics: The Master Equation Approach

P61 = ¢ [, (0)] = e [p(1)01 (0)]. (1.96)

When we substitute for pol('r) in (1.87), we have (1 = 0)

(01 (1)0a(t + 7)) = trs{02(0)e“" [p(t)0: (0)]}. (1.97)

Exercise 1.3 Follow the same procedure to obtain (7 > 0)

(01t +7)04(t)) = trs{01(0)e“T[O2(0) (1))} - (1.98)

Equations (1.97) and (1.98) give formal statements of the quantum re-
gression theorem for two-time averages. To calculate a correlation function
(O1(1)02(#)Os(1)) we cannot use (1.97) and (1.98) because noncommuting
operators do not allow the reordering necessary to bring O (t) next to Os(t).
‘We may, however, generalize the approach taken above. Specifically, we have

(01(1)0:(t")0s(1))
- trSeR [e(i/ﬁ)Htx(t}é] {U)C(i;‘ﬁ)ﬂ(t“-t)éﬂ(o)g—(i/h)ﬂ[t'—l)

%O (0)e™ (i /n)m]
= iIsgr [Oz(ﬂ)a"("fﬁmw“”Os(ﬂ]x(t)01(U)e('"mmf't}]
_ trs{@z (O)trﬁ[e—(i/h}ﬂ’(g-‘ 00, (ﬁ)x(t}él(0)8(""“)”{"—’)]}.

(1.99)
Defining ‘ . ) ‘
X,6,(T) = €~ MHTO4(0)x ()01 (0)el/MHT (1.100)
and
Po,0,(T) = trx[xd,a,(‘r)] (1.101)

as analogs of (1.89) and (1.92), we can proceed as before to the result (7 > 0)
(C1()0a(t + 7)05(t)) = tr5{02(0)e” [03(0)p()O1 (0)]}.  (1.102)

Equations (1.97) and (1.98) are, in fact, just special cases of (1.102) with
either O} (¢) or Og(t) set equal to the unit operator.
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1.5.2 Quantum Regression Theorem
for a Complete Set of Operators

It is possible to work directly with the rather formal expressions derived
above. The formal expressions can also be reduced, however, to a more fa-
miliar form [1.20], which is often more convenient for doing calculations.
Essentially, we will find that the equations of motion for expectation values
of system operators (one-time averages) are also the equations of motion for
correlation functions (two-time averages).

We begin by assuming that there exists a complete set of system operators
A b= 1; 2, ..., in the following sense: that for an arbitrary operator O, and

for each A, i
trs[A(LO)] = Y Myatrs(A,0), (1.103)
A
where the M) are constants. In particular, from this it follows that

(A = trs(A,up) = trs[A,(Lp)]

=3 Myatrs(Asp)
by
= Mu{4,). (1.104)
y
Thus, expectation values (4,), p = 1,2,..., obey a coupled set of linear

equations with the evolution matrix M defined by the M, that appear in
(1.103). In vector notation,

(A) = M(A), (1.105)
where A is the column vector of operators .{i,,, p=1,2,....Now, using (1.97)
and (1.103) (7 = 0):

L8 (1) Au(t + 7)) = trs {A.(0) (Le T [p(2)01(0)))}

dr
=Y Myuytrs{Ax(0)e“" [p(t)Or (0)]}
=" Mu (01 () Ax(t+ 7)), (1.106)
A

or,

dif, (OO At + 7)) = MO (DAt +7)), (1.107)

where Oy can be any system operator, not necessarily one of the ﬁ,,. This
result is just what would be obtained by removing the angular brackets from
(1.105) (written with ¢ — ¢ 4+ 7, and - = d/dt — d/d7), multiplying on
the left by O1(t), and then replacing the angular brackets. Hence, for each
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operator Oy, the set of correlation functions {f)ﬂt}ﬁp(t +7)he=1,2,..5
with 7 > 0, satisfies the same equations (as functions of ) as do the averages
(Au(t + 7)). This is perhaps the more familiar statement of the quantum
regression theorem.

Exercise 1.4 For 7 > 0 show that

d  » . - i
E_;{A(t +7)02(t)) = M{A(t + 7)04(1)). (1.108)
Thus, we can also multiply (1.105) on the right by Os(t), inside the average.
Also show that

O AC+D0:(0) = MIOWAL+70a).  (1109)

It may appear that this form of the quantum regression theorem is quite
restricted, since its derivation relies on the existence of a set of operators A,,,
#=1,2,..., for which (1.103) holds. We can show that this is always so,
however, if a discrete basis |n), n =1,2,..., exists; although, in general, the
complete set of operators may be very large. Consider the operators

Au= Ay = n)(m|. (1.110)
Then
tr5[Anm(£0)] = trs[|n)(m|(£O)]

= (m|(£0)|n)

= (m| (13 ¥, lﬂ')(m'lfﬂ’léim’)) n)

! 4
n! ,m

Il

2 {mi(Lln’)(m’]) I} (' |Ofm")

Z: (m|(Ln’) (m]) In) trs (jm’)(n’|O)

n!,m!

> Mamntme trs(Anme0), (1.111)

n' m'!

with

Momintme = (m) (z:|m’)<n'|) n). (1.112)
11_1 the last step we have interchanged the indices n’ and m’. Equation (1.111)
gives an expansion in the form of (1.103). The complete set of operators
includes all the outer products [n}(m|, n = 1,2,..., m = 1,2,...; this may
be a small number of operators, a large but finite number of operators, or a
double infinity of operators in the case of the Fock state basis.
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1.5.3 Correlation Functions for the Damped Harmonic Oscillator

We will conclude our discussion of two-time averages with two simple exam-
ples based on the equations for expectation values for the damped harmonic
oscillator [Eqgs. (1.78) and (1.79)]. We first, calculate the first-order correlation
function {af(t)a(t+7)). Equation (1.78) gives the equation of motion for the
mean oscillator amplitude:

(6) = — (% +iwo) (a). (1.113)

Then, with A; = a and O; = al, from (1.105) and (1.107), we may write

L .
g(a (ta(t+ 7)) = (2 + uuo) (a (i),;(g tTD' ) fillﬂ_
5 A (1.86) cGed>= ¢ulove”
Thus, L) o (wc“}

(a’(Raft+ 1)) = (a?m(t))g—(1/2+m)v
= [(‘ﬁ.(ﬂ))e_'ﬁ + ﬁ{l _ e—‘?ﬁ]] 6—(1/2-}-{@0]7’ (1115}

where the last line follows from (1.80). If the oscillator describes a lossy
cavity mode, in the long-time limit the Fourier transform of the first-order
correlation function

(a!(0)a(7))ss = lim (af (t)alt + 7)) = e~ OV/2Hiwo)r (1.116)

gives the spectrum of the light at the cavity output. This is clearly a
Lorentzian with width v (full-width at half-maximum).

Note 1.5 This statement about the spectrum of the light at the cavity out-
put is not strictly correct for the lossy cavity model as we have described it.
The reason is that we have taken the environment outside the cavity to be in
thermal equilibrium at temperature T (it is the environment that is modeled
by the reservoir). Given this, the light detected in the cavity output will be
a sum of transmitted light — light that passes from inside the cavity, through
the cavity ontput mirror, into the environment — and thermal radiation re-
flected from the outside of the output mirror. Calculating the spectrum at the
cavity output for this situation is more involved (Sect. 7.3.4). Physically, how-
ever, the result is clear; the spectrum must be a blackbody spectrum. The
Lorentzian spectrum obtained from (1.116) would be observed, as filiered
thermal radiation, for a cavity coupled to two reservoirs, one at temperature
T and the other at zero temperature. If the bandwidth for coupling to the
reservoir at temperature 7' is much larger than for coupling to the zero tem-
perature reservoir, the master equation (1.73) is basically unchanged. Light
emitted into the zero temperature reservoir then shows the Lorentzian spec-
trum obtained from the Fourier transform of (1.116).
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For a second example we calculate the second-order correlation function
(at(t)al(t + T)a(t -+ 7)alt)) = (af ()A(t + T)a(t)). Writing (1.79) in the form

d (@) _ (-1 Y\({™
Et'(ﬁ)_(ﬂ 0 ﬁ)’ (Liry
we set A; = fi = ala and/ig = i (a constant). Then, from (1.105) and

(1.109), with O; = a' and O = a,

d (al @it +7)a®)\ _ (=v 7\[(e'@)nt+ )alt))
d'r( n{i(t)) )_(U 0)( n(n(t)) )
Thus,

(al(t)a(t + T)a(t)) = (al (D)R(t)a(t))e™ " + AlR(L))(1—e ).  (1.119)

We obtained an expression for {7i(£)) in (1.80). The calculation of (af(t)7(t)
a(t)) is left as an exercise:

(1.118)

Exercise 1.5 Derive an equation of motion for the expectation value (al(t)
7i(t)a(t)) = (at?(1)a(t)) from the master equation (1.73) and show that

(! (@)a(t)a(®)) = [(A%(0)) — (A(0))] 7" + 2A(1 — &™)
x [2(A(0))e™" + A(1 - e~ 7). (1.120)

Now, substituting from (1.80) and (1.120) into (1.119),
(ar(t}a*(t + m)alt + 7)a(t))
= {[(A%(0)) — (2(0))] e~2"* + 2A(1 — e~"")[2(R(0))e "
+A(1— e )]} e + A [(R(0))e T + A1 — e )] (1 — e ™).

(1.121)
In the long-time limit, the second-order correlation function is
(at(0)a’(1)a(7)a(0))es = lim (a*(t)a’ (¢ + T)alt + r)a(t))
=a2(1+e™77). (1.122)

This expression describes the well-known Hanbury-Brown-Twiss effect, or
photon bunching, for thermal light [1.23]; at zero delay the correlation func-
tion has twice the value it has for long delays (y7 > 1).

Note 1.6 The correlation time, 1/7, in (1.122) holds for filtered thermal
light in accord with the comments in Note 1.5.

2= | [ SRR






