
1. Dissipation in Quantum Mechanics: 
The Master Equation Approach 

1.1 Introduction 

This book deals with various quantum-statistical methods and their appli­
cation to problems in quantum optics. The development of these methods 
arose out of the need to deal with dissipation in quantum optical systems. 
Thus, dissipation in quantized system~ is a theme unifying the topics covered 
in the book. Two elementary systems provide the basic building blocks for 
a number of. applications: the damped harmonic oscillator, which describes 
a single mode of the electromagnetic field in a lossy cavity (a cavity with 
imperfect mirrors), and the damped two-level atom. The need for a quan­
tized treatment for the damped field mode aro8e originally in the context 
of the quantum theory of the maser and the laser. The damped two-level 
atom is, of course, of very general and fundamental interest, since it is just 
the problem of spontaneous emission. The book is structured around these 
two illustrative examples and their use in building quantum-theoretic treat­
ments of resonance fluorescence and the single-mode laser. A second volume 
will extend the applications to the degenerate parametric oscillator and cav­
ity quantum electrodynamics (cavity QED.). Discussion of the examples will 
guide the development of fundamental formalism. When we meet such things 
as master equations, phase-space representations, Fokker-Planck equations 
and stochastic differentiaJ equations, and the related methods of analysis, we 
will always have a specific application at hand with which to illustrate the 
formalism. Although formal methods will be introduced essentially from first 
principles, in places the treatment will necessarily be rather cursory. Ample 
references to the literature will hopefully offset any deficiencies. 

Our objective in this book is to develop the backgTound needed to gain ac­
cess to issues of current research. The statistical methods we will cover were 
introduced over approximately two decades beginning in the early 1960's, 
stimulated by the invention of the laser. They are characterized by an empha­
sis on the two extremes of statistical physics - the single particle (resonance 
fluorescence) and very many particles (the s ingle-mode laser). Where possi­
ble, they exploit analogies with the methods of classical statistical physics, 
though the incompatibility of a classical description with quantum mechanics 
is, in principle, always prE-.sent. In the second volume we will enter into some 
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of the modern research topics. The objective there will be to extend the meth­
ods discussed in this book, to move away from Lhc one- and many-particle 
extremes and to face the quantum-classical incompntihilit.y head on. 

1.2 Inadequacy of an Ad Hoc Approach 

In classical mechanics the essential features of dissipation, namely, the decay 
of oscillator amplitudes, particle velocities and energies, can be built into the 
theory by the simple addition of a velocity <lcpendenl~ forc:c. For example, th e 
harmonic oscillator, with Hamil tonian 

2 
H = ]!_ + lmw2q2 

2m 2 (1.1) 

and equations of motion 

q =p/m, p = - nu,}q, (1.2) 

becomes a damped harmonic oscillator with the addition of the force -'YP to 
give 

q=p/m, 
or the familiar equation 

p = - 7p- niw2q, (1.3) 

q + 7q + w2q = 0. (1.4) 

Can we simply transfer this approach to the q11~u1t.ized harmonic oscillator? 
For the quantized oscillator q and p bec:omc operators, q and fi, and (1.2) 
gives the Heisenberg equations of motion obtained from Hamiltonian (1.1) 
via the commutation relation 

!tj,p] =iii. (1.5) 

After adding - 7p t.o (1.3), the equations of motion remain linear; thus, the 
classical solution still holds when q and p bccornc operators, and the expec­
tation values of q and fi will be damped in the same way as the classica.I 
variables. We seem to be in good shape. Consider, however, the evolution of 
the commutator (<], fi]. From (1.3) 

and· 

! (q,fi) = qfi + ijp - pg - fiq 
= - 7(q, p], 

(q(t),p(t:)) = e--Yt(q(O),p(O)] = e- 11i/i.. (1.6) 

As a consequence of this decay of the corr1rnntator the Heisenberg uncertainty 
also decays; the Heisenberg uncertainty relation becomes 

il_ 
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LlqLlp ~ ~ne--Yt. (1.7) 

In the face of this difficulty there have been various attempts to con­
sistently incorporate dissipation into quantum mechanics. Some approaches 
based on novel quantization procedures remain controversial. We will not 
review these issues here. Of course, in many of the traditional domains of 
quantum mechanics dissipation plays no role: in the analysis of atomic struc­
ture, or the calculation of harmonic oscillator eigenstates and the like. The 
situation is quite different, though, in quantum optics. For example, the phe­
nomenon of laser action, which gave birth to this field, takes place in a lossy 
cavity. In fact, applications in quantum optics have played a central role in 
developing methods to treat quantum-mechanical dissipation. We follow the 
widely accepted approach pioneered by Senitzky [1.1] for describing lossy 
maser cavities. Some discussion of alternative points of view can be found in 
papers by Ra.y [1.2] and Caldeira and Leggett (1.3), and references therein. 

1.3 Syst em Plus Reservoir Approach 

The system plus reservoir approach begins from a microscopic view of the 
mechanism underlying dissipation. Although the procedure leading to (1.3) 
and (1.4) is often adequate in classical mechanics, even there it provides an 
incomplete description. In particular, equations (1.2) are time-reversal invari­
ant, while in (1.3) this symmetry has been broken. If we want to understand 
the origin of this irreversibility we must begin by recognizing that the oscil­
lator is damped through interactions with a large and complex system - its 
environment. This recognition also leads us to the fundamental relationship 
between dissipation and fluctuations. If the environment is some large system 
in thermal equilibrium, it will exert a fluctuating force F(t) on an oscillator 
coupled to it, in addition to soaking up the oscillator's energy. Equation (1.4) 
must generally be replaced by a stochastic equation 

ij + ri/ + w2q = F(t)/m. (1.8) 

In many situations the added noise source cannot be overlooked - in electrical 
circuits, for example. 

We observe that damping takes place through the coupling of the damped 
system to its environment. Is there anything in this observation to suggest a 
resolution of our problem with commutators? Well, the interaction between 
systems mixes their operators in a way which certainly does play a role in pre­
serving commutators in time. Considei: resonant harmonic oscillators coupled 
in the rotating-wave approximation. The Hamiltonian is 

H = ru.vat a+ ri.wbtb + liK(atb + abt), (1.9) 
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where w is the frequency of the oscillators, " is a coupling constant, at and 
bf are creation operators, and a and b are the corresponding annihilation 
operators, satisfying commutation relations 

[a,at) = 1, [b,bt) = 1. (1.10) 

N ote 1.1 To understand the origin of the Hamiltonian (1.9) first note that 
the free oscillator Hamiltonian (1.1) becomes 

H = liw(ata+ ~) (1.11) 

where ~liw is the zero-point energy, under the transformation 

a= 1 - ../2!i.mw (m.wij + iP), {1.12a) 

at= 1 - ../2lim.w (m.wij - ip). (l.12b) 

Then (1.6) becomes 
[a,at] =e--Yt. (1.13) 

In the rotating-wave approximation an interaction energy proportional to iiaiib 
gives the interaction Hamiltonian liK.(atb + abt) after the highly oscillatory 
terms (energy nonconserving terms) ab and at bt are neglected. 

The solut.ions to the Heisenberg equations of motion following from (1.9) 
are 

Then 

a(t) = e-""'[a(O) cos K.t - ib(O) sin x:t], 
b(t) = e-iwt[b(O) COSK.t - ia(O) sin11:t). 

[a(t), at (t)) = [a(O), at (O)J cos2 K.t + [b(O), bt (O)) sin2 K.t = 1. 

(1.14a) 

(1.14b) 

(1.15) 

We see that the commutator for a(t) and at(t) is preserved in time only by 
the presence of the operator b(O) mixed into the solution for a(t). Taking 
the environmental interaction into account in the treatment of dissipation, 
we might anticipate a similar mixing of environmental operators into the 
operators of the damped system in such a way as to preserve commutation 
relations. This is precisely what Senitzky found (1.1). The fluctuating force 
in (1.8) becomes an operator in Senitzky's theory. Contributions from this 
environmental operator in the solutions for ij(t) and p(t) introduce thermal 
fluctuations, and a1so preserve the commutation relations. 

The master equation method we now discuss is essentially a Schrodinger 
picture version of Senitzky's theory. It is somewhat less transparent on this 
point about preserving commutation relations, so it is valuable to study Sen­
itzky's calculation in the Heisenberg picture as well as the following. In both 
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the philosophy is to model environmental interactions by coupling the un­

damped system S to a reservoir R, beginning with a Hamiltonian in the 
general form 

H = Hs +HR+ HsR, (1.16) 

where Hs and HR are Hamiltonians for S and R, respectively, and HsR 
is an interaction Hamiltonian. The reservoir is only of indirect interest, and 
its properties need only be specified in very general terms; for example, by 
a temperature and an energy density of states. For illustrative purposes we 
will give HR and HsR an explicit ferro once we get a little further into the 
calculation. 

The derivation given here follows the treatments by Louisell (1.4] and 
Haken (1.5) fairly closely. There are some minor differences in the way ap­
proximations are intro~uced, and no attempt is made to follow either author's 
notation. A rather different and more specialized approach is taken by Sar­
gent, Scully and Lamb [1.6). These authors get away without having to deal 
with the complicated frequency and time integrals we will meet in our cal­
culation. It is a useful exercise to study their calculation and try to find 
where they introduce the physical assumptions we will use to deal with these 
integrals. The physics must, of course, be the same. 

We are seeking information about the system S without requiring detailed 
information about the composite system SeR. We will let x(t) be the density 
operator for S ffi R and define the reduced density operator p(t) by 

p(t) = trR[x(t)], (1.17) 

where the trace is taken over the reservoir states. Clearly, if 6 is an operator 
in the Hilbert space of S we can calculate its average in the Schrodinger 
picture if we have knowledge of p(t) alone, and not of the full x(t): 

(O} = trsGJn[Ox(t)] = trs{OtrR[x(t))} = trs[Op(t)]. (1.18) 

Our objective is to obtain an equation for p(t) with the properties of R 
entering only as parameters. 

1.3.1 The Schrodinger Equa t ion in Integro-Differential Form 

The Schrodinger equation for x reads 

x= ~(H,xJ. (1.19) 

where His given by (1.16). We transform (1.19) into the interaction picture, 
separating the rapid motion generated by Hs +HR from the slow motion 
generated by the interaction HsR· Defining 

x(t) := e(ifli.)(Hs+Hn)tX(t)e-(i/Ti)(Hs+lln)', (l.20) 
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from (1.16) and (1.19), we obtain 

X = ~(Hs + HR)X - ~X(Hs +HR)+ e(i/Ti)(Hs+HR)tx_e-<•fli){lfs+HR)t 

1 -= iii {HsR(t), XJ. (1.21) 

where flsR(t) is explicitly time-dependent: 

HsR(t) = e(i/Ti)(Hs+IfR)tHsne-(i/Ti)(Hs+HRlt. (1.22) 

We now integrate (1.21) formally to give 

1 !' 
x(t) = x(O) + ili}o dt' (HsR(t'), x(t')], (1.23) 

and substitute for x(t) inside the commutator in (1.21): 

. 1- lf' - -x = iii [Hsn(t), x(O)J - li2 .lo dt' [HsR(t), (HsR(t'),x(t')]]. (1.24) 

This equation is exact. Equation (1.19) ha.8 simply been cast into a convenient 
form which helps us identify reasonable approximations. 

1.3.2 Born and Markov Approximations 

We will assume that the interaction is turned on at t = 0 and that no correla,­
tions exist between Sand Rat this initial time. Then x(O) = x(O) factorizes 
as 

x(O) = p(O)Ro, 

where Ro is an initial reservoir density operator. Then, noting that 

trR(x(t)J = e<•JTi)Hstp(t)e-(i/r..)Hst = p(t), 

after tracing over the reservoir, (1.24)-gives the master equation 

p = -;2 1tdt! trn{ [HsR(t), [HsR(t'), x(t')]J}, 

(1.25) 

(l.26) 

(1.27) 

where, for simplicity, we have eliminated the term (1/ili)trR{[HsR(t),x(O)I} 
with the assumption 

tr.n[HsR(t)Rol = 0. (1.28) 

This is guaranteed if the reservoir operators coupling to S have zero mean in 
the state Ro, a condition which can always be arranged by simply including 
trR(HsnRo) in the system Hamiltonian (see Sect. 2.2.4 and Note 8.8). 

We have stated that x factorizes at t = 0. At later times correlations 
between S and R will arise due to the coupling between the system and 
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the reservoir. We have assumed, however, that this coupling is very weak, 
and at all times x(t) should only show deviations of order HsR from an 
uncorrelated state. Furthermore, R is a large system whose state should be 
virtually unaffected by its coupling to S (of course, we expect the state of S 
to be significantly affected by R - we want it to be damped). We therefore 
write 

;\'.(t) = p(t)Ro + O(Hsn.). (1.29) 

Now we can make our first major approximation, a Born. appr-oximation. 
Neglecting terms higher than second order in HsR, we write {l.27) as 

P = - ; 2 l dt! trn{ [HsR(t), IHsR(t'),p(t')R0Jl}. (1.30) 

A detailed discussion of tltis approximation can be found in the work of Haake 
fl.7, 1.8). 

Equation (1.30) is still a complicated equation. In particular, it is not 
Markovian since the future evolution of p(t) depends on its past history 
through the integration over p(t') (the future behavior of a Markovian sys­
tem depends only on its present state). Our second major approximation, the 
Markov approximation, replaces p(t') by p(t) to obtain a master equation in 
the Born-Markov approximation: 

P = - ~2 l dt' trn{ [H sn(t), [Hsn(t'),p(t)Ro)l}. (1.31) 

1.3.3 The Markov Approximation and Reservoir Correlations 

Markovian behavior seems reasonable on physical grounds. Potentially, S 
can depend on its past history because its earlier states become imprinted 
as changes in the reservoir state through the interaction Hsn; earlier states 
arc then reflected back on the future evolution of S as it interacts with the 
changed reservoir. If, however, the reservoir is a large system maintained 
in thermal equilibrium, we do not expect it to preserve the minor changes 
brought by its interaction with S for very long; not for long enough to sig­
nificantly affect Lhe future evolution of S. It becomes a question of reservoir 
correlation time versus the time scale for significant change in S. By studying 
the integrand of (1.30) with this view in mind we can make the underlying 
assumption of the Markov approximation more explicit. 

Let us make our model a little more specific by writing 

HsR = Ii L s;I';, (1.32) 

where the s; are operators in the Hilbert space of S and the I'; are reservoir 
operators, operators in the Hilbert space of R. Then 
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HsR(t) =Ii L eC•/n)(Hs+ H,.)ts,r,e- (i/li.)(HsHI,.)t 

= h L ( e<•!li)Hst s,e-(i/li)Hst) ( e(i/li)H,.t r.e-(i/li)H,.t) 

i 

= n L si(t)i',(t). (1.33) 

The master equation in the Born approximation [Eq. (1.30)] is now 

p = - ~ fotdt' trR{[.s,(t)h(t), [s;(t')f;(t'),p(t')R0JI} 

"' 
= - ~lot dt' { s.(t)s;(t!)p(t') tr.n[fi(t)f;(t')Ro] 

'" 
- s;(t)p(t')s;(t')trR[f,(t)Rof;(t')J - s;(t')p(t')s,(t) 

xtrn{lj(t')Roh(t)] + p(t')s;(t')s;(t) trn[Roi';(t')h(t)]} 

= - ~ .{ dt' {1.s,(t)s;(t')fi(t') - s;(t')p(t')s,(t)J(h(t)f;(t'))n 

'·' 
+ [.O(t')s; (t')s.(t) - s;(t)p(t')s;(t'))(f;(t')h(t))n}, (l.34) 

where we have used the cyclic property of the trace - tr( ABC) = tr( CAB) = 
tr(BCA) -· and write 

(fi(t)f;(t'))R = trR(Rof;(t)f';(t')J, 

(i';(t')i';(t))n = trn[Roi';(t')i',(t)J. 

(1.35a) 

{1.35b) 

The properties of t he reservoir enter (1.34) through the two correlation func­
tions (1.35a) and (1.35b). We can justify the replacement of p(t') by p(t) if 
these correlation fonctions decay very rapidly on the timescale on which p(t) 
varies. Ideally, we might take 

(i',(t)i';{t'))k ex: o(t - t'). (1.36) 

The Markov approximation then relies, as suggested, on the existence of two 
widely separated time scales: a slow time scale for the dynamics of the system 
S, and a fast time scale characterizing the decay of reservoir correlation func­
tions. FUrther discussion of this point is given by Schieve and Middleton (1.9). 
We will look explicitly at reservoir correlation functions and the separation 
of time scales in our first example. 
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1.4 The Damped Harmonic Oscillator 

1.4.1 Master Equation for the Damped Harmonic Oscillator 

We now adopt an explicit model. For the Hamiltonian of the composite system 
S EB R we write 

Hs = liwoata, 

HR= Lliw;r;tr;, 
j 

HsR = L Ji(Kjar;t + K;atr;) = li(art +at I'). 
j 

(l.37a) 

(1.37b) 

(1.37c) 

The system S is an harmonic oscillator with frequency w0 and creation and 
. annihilation operators at and a, respectively; the reservoir R is modeled as 
a collection of harmonic oscillators with frequencies w;, a.nd corresponding 
creation and annihilation operators r;t and r;, respectively; the oscillator 
a couples to the jth reservoir oscillator via a coupling constant "-; in the 
rotating-wave approximation. We take the reservoir to be in thermal equilib­
rium at temperature T, with density operator 

Ro = lJ e- liwJri tr1/ksT(l-e- liwJ/ksT), 

' 
(1.38) 

where k 8 is Boltzmann's constant. It is not necessary to be so specific about 
the reservoir model. Haken 11.5), for example, keeps his discussion quite gen­
eral. Aside, however, from its pedagogical clarity, the oscillator model is phys­
ically reasonable in many circumstances. The reservoir oscillators might be 
the many modes of the vacuum radiat ion field into which · an optical cavity 
mode decays through partially transmitting mirrors, or into which an excited 
atom decays via spontaneous emission; alternatively, they might represent 
phonon modes in a solid. 

The identification with (1.34) is made by sett ing 

S1 =a, s2 =at, (l.39a) 

I'i =rt= L 1tjr;t J n =I'= L K.jTj, {1.39b) 
; ; 

and then from (1.33) and (1.37), the operators in the interaction picture are 

and 

s1(t) = eiwoal<>tae-iwoelat = ae-iwot, 

9
2
(t) = eiwoe1atate-iw0 a1at = ateiwot, 

(1.40a) 

(l.40b) 
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f 1(t) = ft(t) = cxp(i~Wn.rntrnt) ~>jr/ exp(- i ~:Wmrmtrmt) 
= LKjr/e;wst, (1.4la) 

j 

fW) = f(t) = exp(<~;>nrntrnt) ~K;r; e~p(-i ~;:wmrmtrmt) 
= LK;rje-iw;t, (1.41b) 

j 

where in {1.41) we use the fact that operators for different reservoir oscillators 
commute. To show, for example, that eiwoa1atae-iwoa.1at = ae-iwot, observe 
that the left hand side is just the formal solution to the Heisenberg equation 
of motion a = -iwola,ata] = -iwoa. Note that, from (1.38) and (1.41), 
(f'1(t))R = (i'2(t))R = 01 as required by the assumption (1.28). 

Now, since the summation in (1.34) runs over i = 1, 2 and j = 1, 2, the 
integrand involves sixteen terms. We write 

p = - l dt' { [aap(t') - ap(t')a] e-iwo(t+t') (ff (t)ft (t'))R + h.c. 

+(at a.t p(t') - at p{t')at] eiwo(t+t') {f'(t)f{t') )n + h.c. 

+ [aat p(t') - at p(t')a] e-iwo{t-t') (f't(t)f(t'))R + h.c. 

+ [af ap(t') - ap(t')at] eiwo(t-t')(f(t)ff (t'))R + h.c.}, 

where the reservoir correlation functions are explicitly: 

with 

(.f't(t)f't{t!))n = L KjKkeiw1teiwkt' trn(Ror/rk t) = 0, 
j,k 

(f(t)i'(t'))R = L K.jKke- i"'Jte- i"'•t' trR(Ror;rk) = 0, 
j ,Jc 

(ff (t)i'(t'))R = L K.jK.keiwste - iw•t' trn(Ror; f rk) 
j,k 

= L l"-j l2eiw;(t- t'>n(w;, T ), 
j 

{f(t)f't(t'))n = L K;K.Ze-iw1tei"'•1' trn(Ror;rkt) 
j,k 

= L IK;l2e-iw1(t-t'l [n(w3,T) + 1), 
; 

(1.42) 

(1.43) 

(1.44) 

(1.45) 

(1.46) 

\ _ 
~ ' 
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e-r.w1/ksT 
ii(w;,T) = tr.R{Ror/ri) = ,, /k r· {1.47} 1- e- ""J ·s 

The correlation functions (1.43)- (1.46) follow quite readily by evaluating the 
trace using the multi mode Fock states as a basis. n(w;, T) is the mean pho­
ton number for an oscillator with frequency w; in thermal equilibrium at 
temperature T . 

The nonvanishing reservoir correlation functions {1.45) and {1.46} involve 
a summation over the reservoir oscillators. We change this summation to an 
integntion by introducing a density of states g(w) such that g(w)di..J gives the 
number of oscillators with frequencies in the interval w to w + di..J. Making 
the change of variable 

T=t-t', (1.48) 

{1.42) c~ then be restated as 

p = - l dT{[aat p(t - T) - at p(t - T)a.J e - iwoT (f't (t)f(t - T))R + h.c. 

+ [atap(t - ~) - ap(t - T)at] eiwoT (f(t)ff (t - r))R + h.c. }, (1.49) 

where the nonzero reservoir correlation functions are 

(ft (t)f(t - r}}R = 100 

di..; eiwr g(w)lx:(w)l2n(w, T), (1.50) 

(f(t)ft (t - r))R = 100 
di..J e-iwT g(w)jx:(w)l2 (n(w, T) + 1], (1.51) 

with 
n(w, T) = . e- liw/ksT - ,._ ,,,. . (1.52) 

We can now argue more specifically about the Mar]iQ.y approximation. Are 
(1.50) and (1.51) approximately proportional to o(f)?-We can certainly see 
that for r "large enough" the oscillating exponential will average the "slowly 
varying" functions g(w), jx:(w)l2 , and n(w, T) essentialJy to zero. However, 
how large is large enough? Can we get some idea of the width of these cor­
relation functions? Let us look at (1.50), taking g(w) j11:(w)l2 = Cw, with 
C a constant. This correlation function may be evaluated in terms of the 
trigarnma function [l.10]: 

( 00 -lU.J/ksT 
(ft (t)f(t - T))n =Clo dw e'"'7 we _ .. 

=CC2 dx - ---l
oo xe-(1- iT/tn)"' 

R 0 1- e-:i: 

= Ct"ft2 '1/;1 (1 - iT /tR), (1.53) 
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where we have defined the reservoir correlation time tR = li/k8T. A simple 
approximation gives some insight into the behavior of the trigamma function. 
Set 

then 

- llw/kBT ksT -lU.J/ksT. 
we "'--e ' ----;..-;Jj~T - /i 

(ft (t)f(t - T))R ~ CksT {oo di..Jei<NT e-Fu.J/ksT 
Ii lo 

,..., Ct- 2 1 + ir/tR 
,....,, R "' 

(1.54) 

(1.55) 

The approximation is accurate for low frequencies, but is not so good for 
w,..., k8 T/!i = tJi1 ; here the error is,..., 40%. It is adequate, nevertheless, to 
give us a feel for the qualitative behavior of the reservoir correlation function. 
Actually, the exact result for the real part of the correlation function can be 
computed with little effort using the formula (1.10) 

Re['f/!1(1-ir/tR)) = !7l"2 (1 - coth2{1TT/tR)] + !(r/tR)-2
• (1.56) 

The exact result is plotted together with the real part of (1.55) for comparison 
in Fig. l.l(a). 

2.0 
I 

(a} 6.o II (b) 

l.S 
~ ~ 
~ 4.0 ... .__ 
.!; .!; 

I 1.0 I 
..... c 2.0 ...... 

~ t1z: 
$ 

~ o.s Q) ' .x: o.o . \ ·----::--·-·-c \., ,_ .... 

0.0 
' ........................ __ ····-

-2.0 
0.0 2.0 4.0 0.0 2.0 4.0 

r/tR T/tR 
Fig. 1.1 (a) Real part of the reservoir correlation function for g(w)lx:(w}l2 = Cw 
plotted from (l.56) (solid line) and (1.55) (dashed line). (b) Real pa.rt of the reser­
voir correlation function for g(w)JK.(w)J~ = Cw3 plotted from (1.61} (solid line) and 
(1.60) (dashed line). 

Equation (1.55} indicates a correlation function peaked about T = 0 with 
a width tR = li/k8 T. In {l.49} the reservoir correlation functions are inte­
grated against two time-dependent terms: p( t - T) and e±iwoT. Now, at room 



1.4 The Damped Harmonic Oscillator 13 

temperature n/kBT ~ 0.25 x 10-13s. If the oscillator a represents an optical 
cavity mode, we expect. p(t - r) to vary on the time scale of a typical cavity 
decay time, ts ~ 10-8s; and if wo is an optical frequency, e±i"'oT oscillates on 
a time scale to~ 10- 1:.s. Then, since ts/tR ~ 10° it seems we can justify the 
Markov approximation and replace p(t - r) by p(t). But, with to/tR ~ 10-2, 

we cannot set r = 0 in the terms e±iwo".". Rather, integrating the reservoir cor­
relation functions against these oscillating terms will extract the wo frequency 
component of the correlation functions, as in a Fourier transform. 

After taking a closer look we might be a little worried about the imaginary 
part of (1.55). This has a long tail which decays as (r/tR)-1; the integral of 
this tail is logarithmically divergent; far out in the tail the replacement of 
p(t-r) by p(t) will not bejusti~ed. It is, however, thewo frequency component 
of the product p(t - r)(rt (t)I'(t - r))n that survives the integral in (l.49), 
and with t0 < tR << ts this frequency component is contributed by the 
short-time behavior of (1.55) where the replacement of p(t - r) by p(t) is 
justified. 

In fact , the divergent tail is a consequence of the form we have chosen for 
g(w)x:2 (w). More generally, if we take g(w)lx:(w)l2 =Cw", with n a positive 
integer, 

dn- 1 
(ft(t)f(t - r)}R = (-ir-1 dr"-1 [Ctji27/1'(1 - iT /tn)] 

= Ct:R(n+l)(- l)n-l'1j;(n)(l - iT /tR), (1.57) 

where the 'l/J(n) a.re the polygamma functions (2.10). In the approximation 
(1.54) 

d"-1 [ 2 1 + ir/tR ] 
(fl(t)f(t-r)}R=(- it-

1
d

7
ri-1 Cfj? l+(r/tn)2 

dn-1 1 + ir /tn (l 
58

) - (n+l)( ·)n-1 2 · · 
=Ctn -i d(r/tR)"-1 1 + (r/tn) 

For r /tn > > 1 the asymptotic form of the polygai_nma function gives 

(fl (t)f(t - r)}R ~ - Ct:R(n+l)[i"+l(n - l)!J( ~n(r /tR)-(n+l) 

-i(r/tn)-"], (1.59) 

which has no (r/tR)- 1 tail for n > 1. 
The case n = 3 is of special interest since this corresponds to the form 

of g(w)jx;(w)l2 that we will meet when we apply our theory to the damped 
two-level atom (Sect. 2.2). The approximate result (1.58) gives 

. (fl(t)f'(t-r)} ~ CC42[1- 3(r/tn)
2
] + i2(r/tn) [3 - (r/tR)2] (1.60) 

R R (1 + (r/tn)2]3 
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For comparison with the real part of this result, the rea.I part of the exact 
correlation function can be computed from (1.57) using the formula 

Re [11P>(1 - ir /tn)] = 7T4 [l - coth2(7Tr /tR)][l - 3 coth2(7TT /tR)] 

- 3(r /tR) - 4. (l.61) 

This formula is obtained by taking two derivatives of (1.56). The exact and 
approximate results for the real part of the correlation function are plotted 
in Fig. l.l(b). Again the correlation function is peaked a.round r = 0 with 
a width ~ tR. The approximate correlation function (l.60) explicitly shows 
the (r/tn)- 4 and (r/tn) - 3 dependence for the real and imaginary parts, 
respectively, in the large r limit, as given by (1.59). 

Exercise LI Consider the correlation function (l.51). The second term in­
side the square bracket comes from quantum (vacuum) fluctuations. It arose 
from our use of the boson commutation relation in the derivation of (1.46). 
What contribution does this term make to the correlation function? 

Continuing our derivation now from (1.49), it is actually more straight­
forward to evaluate the time integral first, without performing the frequency 
integrals to obtain an explicit form for the reservoir correlation functions. 
This is possible now we are satisfied that the r integration is dominated by 
times that are much shorter than the time scale for the evolution of p. With 
p(t - r) replaced by p(t) (Markov approximation), (1.49) becomes 

f> = a(afia.t - ata.p) + fJ(apa.t + a.t pa - a tap- paat) + h.c., (l.62) 

with 

a= lotdr lo°" dwe-i(w-wa)rg(w)lx:(w)l2 , (l.63) 

/3 = l dr lo"° dw e-i(w- ..,o)T g(w)IK(w)l2n(w, T). (l.64) 

Then, since t is of the order of ts and the r integration is dominated by much 
shorter times ,..., tn, we can extend the r integration to infinity and evaluate 
a and /3 using 

Jim tdr e-i(..,-wo).,. = 7ro(w - wo) + i-P-, (1.65) 
i-oo}o wo - w 

where P indicates the Cauchy principal value. We find 

Cl!= 1T9(wo)lx:(wo)l2 + iL\, 

/3 = 1Tg(wo) lx:(wo) l2fi(wo ) + iLl', 

with 

(l.66) 

(l.67) 
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Ll;: p /"'
0 
dw g(w)IK(w)l

2 

lo w0 -w • 
(1.68) 

Ll':: p {
00 

dw g(w)IK(w)l2 
_ lo wo - w n(w,T). (1.69) 

Note 1.2 To obtain (1.65), we have 

l td -i(w-wo)T sin(w - wo)t .1- cos(w - wo)t 
Te = - t . 

O W-Wo w - wo 

The limit as t tends to infinity is defined anticipating the role of the right­
hand side inside an integration over w, thus: 

lim f;;;(w) sin(w - wo)t = f(wo) lim loo dw sin(w - wo)t -" '.~:~: «:.C:l 
t.-.oo }_

00 
w- wo t~oo _ 00 w - w0 _ "'..· .s r-··.1 

Y'-';;;; <>~(k = 1ff(w0 ) 'rcs.·,.., ·c .>' . .--:< • . .,; 
(.•.f"(; ·C pq"' (" 
0"~tt'v.Jo = 1-: dwn8(w - wo)f(w); 

also 

1-
00 1 - cos(w - wo)t 

Jim dwf (w )---'--....;;..:... 
t-->OO • _ 00 W - WO 

= 100 
dw f(w) _ lim 100 

dw f(w) cos(w - w0 )t 
_

00 
w - wo t-oo _ 00 w - wo 

= Pjoo dw f(w) ' 
- oo w -wo 

where the term 
Jim ;

00 
dw J(w) cos(w - wo)t 

t-oo _
00 

W - WO 

subtracts the singularity at w = Wo to give the principal va.Iue integral (1.11]. 

We finally have our master equation for the damped harmonic oscillator. 
After defining 

/ = 2ng(wo) l~(wo) !2 , 
n = n(w0 ,T}, 

from (1.62), (1.66}, and (1.67), we obtain 

p = - iLl[at a, pj + '.!(2apa.t - a tap - pat a) 
2 

+1ri(a.pat +atpa - atap-paa.t). 

(1.70a) 

(1.70b) 

(1. 71) 

Here p is still in the interaction picture. To transform back to the Schrodinger 
picture we use (1.26) to obtain 
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. 1 [ P =iii Hs,p] +e-(i/li)Hstj;e<ifl'•)Hst. (1.72) 

With Hs = /iwoat a, we substitute for p and use (1.26) and (1.40) to write, 
for ex.ample, 

e- •WOCl Cl apa e"""" a = e-"'100 O a e'"'O" G pe-•woG Cl a e""O" U . It t' tt . t t(· It , t t)t · It 

= (e-iwoci1 citae•wo"'"t) p (e-iwocit otat e""o"' at) 

= apat. 

Each term can be treated similarly. We arrive at the master equation for the 
damped harmonic oscillator 

p = - iw~[afa,pJ + ~(2apat - atap- pat a) 

+ 7fi.(apat +at pa - a tap- pa.at), (1.73) 

where 
wb = wo + Ll. (1.74) 

Note 1.3 An alternate, more compact, writing of the master equation (1. 73) 
may be given in the form 

p = -iw0{ata,p] + ~([a,paf] + [ap,at]) 

+ ~n([ap,at] + [at,pa]). (l.75) 

In both this form and (1.73) the damping terrns are gxouped according to 
whethe~ they are propotional ton or not. This is a natural grouping from the 
point of view of the phase-space representations commonly used in quantum 
optics which we meet in Chaps. 3 and 4 (see (3.47), for example, where the 
terms proportional and not proportional to ii have distinct physical interpre­
tations]. Nowadays, it is more usual to group the terms so that the Lindblad 
form of the master equation is explicit [l.12], writing 

p = - iw0lata,p] + ~(fi. + 1)(2apat - a tap - pat a) 

+ ~n(2at pa - aat p- paat). (l.76) 

Herc the physical interpretation follows from the rate equations satisfied by 
the probabilities Pn = (nlpln) for the oscillator to be found in its nth energy 
eigenstate: 

Pn = 7(n + l)(n + l)Pn+t - 1nnpn 

+ /finPn-1 - 7ii(n + l)Pn· (1.77) 
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The terms on the right-hand side of (1.77) describe transition rates into and 
out of the nth energy level (see Fig. 7.4) and originate, respectively, in the 
terms proportional to 2apa.t, - (atap +pat a), 2at pa, and - (aatp + pa.at) in 
(1.76) !also see the discussion below (2.27) and (2.36d)]. 

Note 1.4 There is a large literature on the treatment of dissipative quantum 
systems using semigroups, from which the work of Lindblad on the form of 
the generator for physical semigroup dynamics [1.12) is a resul t of particular 
relevance to quantum optics; thus, the master equations we met in this book 
are all of Lindblad form. The foundational work of Davies (1.13] has also 
been influential in quantum optics, particularly in relation to the theory of 
photon counting [l.14]. We will have more to say about this topic when we 
discuss quantum trajectories in Volume II (Chaps. 15 and 16). More gener­
ally, the orientation in the literature on semigroups is towards the proof of 
rigorous mathematical results and hence the connections to quantum optics 
applications a.re somewhat indirect. 

1.4.2 Some Limitations 

Equation (1.73) is one of the central equations for future applications. Before 
proceeding we should note its limitations as a general equation for the damped 
harmonic oscillator. 

First, it is derived in the rotating-wave approximation (R.W.A.). We ex­
pect this to be a good approximation for oscillators at optical frequencies 
[l.15], but for low frequency oscillators (strong damping, where the decay 
time approaches the oscillator period) we would not expect the R.W.A . to 
work well. In fact, even at optical frequencies the R.W.A. brings one notable 
inaccuracy. The frequency shift Li in (1.74) is small, and generally neglected. 
However, in the example of the damped two-level atom this is the Lamb shift, 
and it is therefore of fundamental importitnce. Of course, an accurate calcular 
tion of the Lamb shift must include many things that we do not discuss - for 
example, relativistic effects. Nevertheless, it is as well to know that the (two­
level) nonrela.tivistic contribution to the Lamb shift is not obtained correctly 
when the master equation is derived using the rotating-wave approximation. 
A derivation that does not use the R W .A. is quite straightforward and pro­
ceeds along the same lines as the calculation in Sect. 1.4.1. The details are 
given by Agarwal [1.16, 1.17], who, in Ref. (1.17] in particular, discusses the 
question of the frequency shift. 

Secondly, (l.73) is not valid at low temperatures. At sufficiently low tem­
peratures the reservoir correlation functions can no longer be treated as 5-
functions. There is quite an active interest in this low temperature regime. 
Disc~ions can be found in recent papers by Caldeira and Leggett 11.3), 
Lindenberg and West [1.18j, and Grabert et al. (1.19]. 
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1.4.3 Expectation Values and Commutation Relations 

Let us make some simple checks to see if (1.73) predicts the behavior we 
expect from a damped harmonic oscillator. Since we have formulated our 
theory in the Schrodinger picture, we cannot obtain solutions for the oper­
ators themselves, but only for their expectation values. For example, if we 
multiply (1.73) on the left by a and take the trace (over the system S) we 
obtll.in an equation for (a}= tr(ap): 

(a} = - iw0 tr(aatap - apata) + ~ tr(2a2 pat - aatap- a.pat a) 

+ l'fi tr(a2pat + aatpa - aatap - apaat) 

= -iw0 tr((~~,..- ata)ap] + ~ tr[(at~aat)ap) 
+')'fitr[(ata - aat)ap+a(~afa)p] _., Vo.v.1 S''"(h

1 

I' . • , ~--'I 

= -( 2 + iwo) (a}, (1.78) 

where we have used the cyclic property of the trace and the boson commu­
tation relation (1.10). From now on we assume that the frequency shift L\ is 
included in the resonance frequency of the oscillator and do not distinguish 
wl, from wo. Equation (l.78) correctly describes the damped mean oscillator 
amp)jtude. 

As a second example consider (n} =(a.fa): 

(ft)= - i.w0 tr(ataalap- atapata) + '!. tr(2ata2pat - ataatap 
2 

- atapaf a)+ -yn tr(ata2pat + ataat pa - at aat ap - atapaat) 

= l'tr[at2a 2p - (ata)2p] 

+ ')'1i tr [o.t2a2 p + (aat)2 p - (at a)2p - aat2ap] 

= - l'((n} - n), (1.79) 

with the solution 

(n(t)) = (n(O))e--rt + n(l - e--r1). (1.80) 

Notice how thermal fluctuations are fed into the oscillator from the reservoir; 
the mean energy d.oes not decay to zero but to the mean energy for an 
oscillator with frequency w0 in thermal equilibrium at temperature T. 

Exercise 1.2 Show that the thermal equilibrium density operator 

e- Hs/kaT 

Peq = tr(e- Hs/ksT) 

e-"""oa1a/k8 T 

1-e-!u.Jo/ksT 
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satisfies (1. 73) in the steady state. 

As a. final observation we note that the boson commutation relation is 
preserved in time - at least in the mean, which is all we can say in the 
SchrOdinger picture. Using the initial time commutator we find 

([a,at)(t)) = tr{[a, at)p(t)} = tr{p(t)} = 1; 

it is readily shown that (1.73) preserves the trace of the density operator. 

1.5 Two-Time Averages 
and the Quantum Regression Theorem 

We have developed a formalism which allows us, in principle, to solve for the 
density operator (reduced density operator) for a. system interacting with a 
reservoir. From this density operator we can obtain time-dependent expec­
tation values for any operator acting in the Hilbert space of the system S. 
What, however, about products of operators evaluated at two different times? 
Of particular interest, for example, will be the first-order and second-order 
correlation functions of the electromagnetic field. For a. single mode these are 
given by 

c<1>(t,t+r) ()( (af(t)a(t+r)), 

c<2>(t, t + r) (l( (at (t)at (t + r)a(t + r)a(t)). 

The first-order correlation function is required for calculating the spectrum 
of the field. The second-order correlation function gives information about 
the photon statistics and describes photon bunching and antibunching. 

Note 1.4 It may seem a strange talking about the spectrum of a single 
mode field since we normally associate a single mode with a single frequency. 
Here we are dealing, however, with what should more correctly be called a 
quasimode - a mode defined in a lossy optical cavity, which therefore has a 
finite Jinewidth. 

Clearly, avera,ges involving two times cannot be calculated directly from 
the master equation - at least, not without a little extra thought. We need to 
return to the microscopic picture of system plus reservoir. At this level tw<r 
time averages are defined in the usual way in the Heisenberg representation. 
Our objective, then, is to derive a relationship that allows us to calculate 
these averages at the macroscopic level using the master equation for the 
reduced density operator alone; thus, in some approximate way we wish to 
carry out the trace over reservoir variables explicitly, as we did in deriving 
the master equation itself. The result we obtain is known as the quantum 
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regression theorem and is attributed ~o Lax 11.20, 1.21]. We will not follow 
Lax in detail, but our method is fundamentally the same as his. 

1.5.1 Formal Results 

Recall our microscopic formulation of system S coupled to reservoir R. The 
Hamiltonian for the composite system S <I> R takes the form given in (1.16). 
The density operator is designated x(t) and satisfies SchrOdinger's equation 
{1.19). Our derivation of the master equation has given us an equation for 
the reduced density operator (1.17), which we will now write formally as 

p=£p; {1.81) 

£ is a generalized Liouvillian, a "superoperator" in the language of the 
Brussells-Austin group (1.22]; £operates on operators rather than on states. 
For the damped ha.rmonic oscillator, from (1.73), the action of£ on an arbi­
trary operator 6 is defined by the equation 

£6 = - iw0 [ata, 6) + ~(2a6at - ata6 - 6ata) 

+ "'(ii(a6at + at6a - at a6 - 6aat). (1.82) 

Within the microscopic formalism multi-time averages are straightfor­
wardly defined in the Heisenberg picture. In particular, the average of a 
product of operators evaluated at two· different times is given by 

(01 (t)02(t')) = trse.1dx(0}01 {t)02(t')), (1.83) 

where 6 1 and 62 are any two system operators. These operators satisfy the 
Heisenberg equations of motion 

.:. 1 A 

01 = ili[01,HJ, 
; 1 • 
02 = iii 102, H], 

with the formal solutions 

61(t) = e(;/li)Ht61(0)e-(i/li)Ht, 

62(t') = eCi/li)Ht! 02(0)e-(i/li)Ht'. 

From {l.19), the formal solution for x gives 

x(O) = e<ifli}Htx(t)e-Cifli)Ht. 

(1.84a) 

(1.84b) 

{1.85a) 

(1.85b) 

{1.86) 

We substitute these formal solutions into (1.83) and use the cyclic property 
of the trace to obtain 

b 
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(01 (t)02{t')} = trseR [ e(i/li)Htx(t)01 {O)eCi/li)H(t' -t>62(0)e-(ifli)Ht'] 

= trseR [ 02(0)e-<•fli)H(t' - t>x(t)61 (O)e<•fli)H(t' - t)] 

= trs{ 02(0)trn[e-(i/li)H(t'-t)x(t)01 (O)e(ifn.)H(t' -t)]}. 
{1.87) 

In the final step we have used the fact that 62 is an operator in the Hilbert 
space of S alone. 

We now specialize to the case t' :?: t and define 

T:: t1 -t, 

x
6

,(r) = e-(i/ll)H~x(t)01 (0)e<•fli)H-r_ 

Clearly, x6 , satisfies the equation 

with 

dxo, =.;.. [H,xaJ 
~ iii 

x 61(0) = x{t)01(0). 

(1.88) 

(1.89) 

(1.90) 

(1.91) 

If we are to eliminate explicit reference to the reservoir in (1.87), we need to 
evaluate the reservoir trace over x61(r) to obt~n the reduced operator 

Po1(r) = trn. [xei1 (r)J ' (1.92) 

where 

p01(0) = trR[x(t)01(0)] = trR[x(t)]01{0) = p(t)61 (O}; (1.93} 

notice that p
61

(r) is just the term trR[· ··]inside the curly brackets in (1.87). 
If we then assume that x(t) factorizes as p(t)Ro, in the spirit of (1.29), from 
(1.91) and (1.93) we can write 

Xo,(O) = Ro[p(t)61 (O)] =Ro Po,(O). {l.94) 

Equations (1.90), (1.92}, and (1.94) are now equivalent to {1.19}, {l.17), a.nd 
(1.25) - namely, to the starting equations in our derivation of the master 
equation. We can find an equation for p61(r) in the Born-Markov approxi­
mation following a completely analogous course to that followed in Sects. 1.3 
and 1.4. Since {l.19) and (1.90) contain the same Hamiltonian H, using the 
formal notation of (1.81), we arrive at the equation 

dp6 
I -J:,p ---;;:;:-- 6,• (1.95) 

with solution 
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p61(r) = ec.7 [Pe>, (o)] = e.c.,.[p(t)01(0)]. 

When we substitute for p01(r) in (1.87), we have (r 2:: 0) 

(01 (t)02(t + r)} = trs{ 02(0)e.£:.,.[p(t)01 (O)J}. 

Exercise 1-3 Follow the same procedure to obtain (r:?; 0) 

(01 (t + r)02(t)} = trs{ 01(0)e.t:"'[02(0)p(t)J}. 

(1.96) 

(l.97) 

(1.98) 

Equations (l.97) and (1.98) give formal statements of the quantum re­
gression theorem for two-time averages. To calculate a correlation function 
(01 (t)02(t')03(t)} we cannot use {l.97) and (1.98) because noncommuting 
operators do not allow the reordering necessary to bring 01(t) next to 03(t). 
We may, however, generalize the approach ta.ken above. Specifically, we have 

(61 (t)02{t')03(t)) 

= trseR [ e<if'•)Htx(t)01 (O)e(i/li)H{t'-tl62(0)e-C•/li)H(t' - 1) 

x Oa (O)e-(i/li)Ht] 

= trseR [ 02(0)e-<•t11lH(t'-t>63(0)x(t)61 (O)e(i/li)H(t' -t)] 
= trs{62(0)tr 1t[ e-(i/li)H(t' - tl63(0)x(t)61 (O)e(i/ll)H(t'-t))}. 

(1.99) 

Defining 

and 

Xo
3
6, (7 ) = e-(i/li)H.,. 03(0)x(t)01 (O)e(i/li}H-r 

Po.o,(r) = trR[xa.o,(r)] 

{1.100) 

{1.101) 

as analogs of (1.89} and (1.92), we can proceed as before to the result (r 2: 0) 

(01 (t)62(t + r)03(t)} = trs{ 02{0)e.C'T(03(0)p(t)01 (O)J} . (1.102) 

Equations (1.97) and (1.98) are, in fa.ct, just special cases of (1.102) with 
either 01 (t) or 03(t) set equal to the unit operator. 
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1.5.2 Quantum Regression Theorem 
for a Comp let e Set of Oper ators 

23 

It is possible to work directly with the rather formal expressions derived 
a.bove. The formal expressions can also be reduced, however, to a more fa­
miliar form [1.20), which is often more convenient for doing calculations. 
Essentially, we will fin d that the equations of motion for expectation values 
of system operators (one-time averages) are also the equations of motion for 
correlation functions (two-time averages). 

We begin by assuming that there exists a complete set of system operators 
Aµ,µ= l , 2, . . ., in the following sense: that for an arbitrary operator 6, and 
for each A,,, 

trs[Aµ(.C6)] = LMµ.>.trs(A.>.0), 
.>. 

where the Mµ.>. are constants. In particular, from this it follows that 

(Aµ} = trs(Aµp) = trs(Aµ(.Cp)] 

= l:M,..>.trs(A.xp) 
.>. 

= LMµ.>.(A.>.}. 
.>. 

(l.103) 

(1.104) 

Thus, expectation values {Aµ}, µ = 1, 2, ... , obey a coupled set of linear 
equations with the evolution matrix M defined by the Mµ>. that appear in 
(1.103). In vector notation, 

(A) = M(A}, (1.105) 

where A is the column vector of operators Aµ,µ= 1, 2, .... Now, using (1.97) 
and (1.103) (r ~ 0): 

d~ (61(t)Aµ(t + r )} = trs{A,.(O)(.Cec .. lp(t)01 (0)])} 

= LMµ.>.trs{A.x(O)e.c.,.[p(t)61(0)J} 
.>. 

= 2:Mµ.>.(61(t)A>.(t+ r)}, (1.106) 
.>. 

or, 
d A A A A 

dr (01 (t)A(t + r)} = M{01(t)A(t + r)}, (1.107) 

where 61 ca.n be any system operator, not necessarily one of the Aµ- This 
result is just what would be obtained by removing the angular brackets from 
(1.105) (wri~ten with t --> t + r, and · = d/dt --> d/dT), multiplying on 
the left by 01 (t), and then replacing the angular brackets. Hence, for each 
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operator 61, the set of correlation functions (61(t)Aµ(t + r)), µ = 1, 2,. . ., 
with r ~ 0, satisfies the same equations (as functions of r) as do the averages 
{Aµ(t + r)). This is perhaps the more familiar statement of the quantum 
regression theorem. 

Exercise 1.4 For r ~ 0 show that 
d A A A A 

dr (A(t + r)Oz(t}) = M("4:(t + r)02(t)). (1.108) 

Thus, we can also multiply (1.105) on the right by 62(t), inside the average. 
Also show that 

d A A A - A A 

dr (01 (t)A(t + r)02(t)} = M(01(t) A (t + r)02(t)}. (1.109) 

It may appear that this form of the quantum regression theorem is quite 
restricted, since its derivation relies on the existence of a set of opera.tors Aµ, 
µ = 1, 2, .. ., for which (1.103) holds. We can show that this is always so, 
however, if a discrete basis In}, n = 1, 2, .. ., exists; although, in general, the 
complete set of operators may be very large. Consider the operators 

Then 

with 

Aµ = Anm = ln}(mj. 

trs[Anm(.C6)] = trs[ln}(ml(.C6)] 

= (ml (.CO) In) 

~ (mi(£ .t:, ln')(m'l(n'ICilm')}•) 

= L (ml(.CJn'}(m'l) ln)(n'l6im') 
n',m1 

= L (ml(.Cln')(m'I) In) trs (lm'}(n'IO) 
n1

1m 1 

(1.110) 

= L Mnm;n'm' trs(An'm'O), (1.111) 
n 1 ,m1 

Mn.m;n'm' = (ml ( .Clm')(n'I) In). (1.112) 

In the last step we have interchanged the indices n' and m'. Equation (1.111) 
gives an expansion in the form of (1.103). The complete set of operators 
includes all the outer products ln}(ml, n = 1, 2, .. ., m = 1, 2, . . . ; this may 
be a small number of operators, a large but finite number of operators, or a 
double infinity of operators in the case of the Fock state basis. 
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1.5.3 Correlation Functions for the Damped Harmonic Oscillator 

We will conclude our discussion of two-time averages with two simple exam­
ples based on the equations for expectation values for the damped harmonic 
oscillator [Eqs. (1.78) and (1.79)). We first calculate the first-order correlation 
function {at (t)a(t + r)). Equation (1.78) gives the equation of motion for the 
mean oscillator amplitude: 

{a} = - G + iwo) (a). (1.113) 

Then, with A1 = a and 01 =at, from (1.105) and (1.107), we may write 

Thus, 

! (at (t)a(t + r)) = - G + iwo) (at (t)a(t + r)). 

l( l-l \ 
(1 • .90 ') <0.c.-~J >==-

(1.114) 
(.C\101'>e Q-e­

- 1 ~ 
+ U.(1 - C- } 

(at (t)a(t + r)} = (afWa(t))e- ("y/2+iwo),. 

= [ (ft(O)}e--rt + fi(l - e--Y1) ] e- (-r/2+iwo)T, (l.115) 

where the last line follows from (1.80). If the oscillator describes a lossy 
cavity mode, in the Jong-time limit the Fourier transform of the first-order 
correlation function 

(o.t(o)a(r)} •• = lim (af (t)a(t + r)) = ne-('Y/2+iwo)1" 
t-->OO 

(1.116) 

gives the spectrum of the light at the cavity output. This is clearly a 
Lorentzian with width 'Y (full-width at half-maximum). 

N ote 1.5 This statement about the spectrum of the light at the cavity out­
put is not strictly correct for the lossy cavity model as we have described it. 
The reason is that we have taken the environment outside the cavity to be in 
thermal equilibrium at temperature T (it is the environment that is modeled 
by the reservoir). Given this, the light detected in the cavity output will be 
a sum of transmitted light - light that passes from inside the cavity, through 
the cavity output mirror, into the environment - and thermal radiation re­
flected from the outside of the output mirror. Calculating the spectrum at the 
cavity output for this situation is more involved (Sect. 7.3.4). Physically, how­
ever, the result is clear; the spectrum must be a blackbody spectrum. The 
Lorentzian spectrum obtained from (1.116) would be observed, as filtered 
thermal radiation, for a cavity coupled to two reservoirs, one at temperature 
T and the other at zero temperature. If the bandwidth for coupling to the 
reservoir at temperature T is much larger than for coupling to the zero tem­
perature reservoir, the master equation (1. 73) is basically unchanged. Light 
emitted into the zero temperature reservoir then shows the Lorentzian spec­
trum obtained from the Fourier transform of (1.116). 
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For a second example we calculate the second-order correlation function 
{at (t)a1 (t + r)a(t + r)a(t)) = (af (t)n(t + r)a(t)). Writing {l.79) in the form 

!!._ ({n}) = (--y 'Y) ({n)) 
dtn oo n' {1.117) 

we set A1 = n = ata and A2 = fi. (a constant). Then, from (1.105) and 
(1.109), with 01 = at and 02 = a, 

!!_ ({af(t)n(t + r)a(t))) = (-'Y 'Y)((af(t)n.(t + r)a(t))) 
dr n{n(t)) o o n(n(t)) · (l.118) 

Thus, 

(at (t)n(t + r)a(t)) = (at (t)n(t)a(t))e- 7'" + n(n(t))(l - e_'Y,.). (1.119) 

We obtained an expression for (ii(t)) in (1.80). The calculation of (af (t)n(t) 
a{t)) is left as an exercise: 

Exercise 1.5 Derive an equation of motion for the expectation value (a1(t) 
n(t)a(t)) = (af2 (t)a2(t)) from the master equation {1.73) and show that 

(af(t)n(t)a(t)) = [(n2 (0)) - (n(O))] e-2-rt + 2n(l - c-r1) 

x [2{n(O)}e- -r1 + n(l - e--r1)]. (1.120) 

Now, substituting from (l.80) and (1.120) into (1.119), 

(at(t)at(t + r)a(t + r)a(t)} 

= {[(n2(0)} - {n(O)))e- 2""Yt + 2n{l - e- 71)[2(f>,(O))e-""Yt 

+ n(l - e-7 ')]} e- -r-r + n ( (n(O))e-71 + n(l - e- -rt)] (1- e--r-r). 

(l.121) 

In the long-time limit, the second-order correlation function is 

(af(Q)at(r)a(r)a(O)} •• = lim {at(t)af(t+r)a(t+r)a(t)) 
t-->OO 

= n2 (1 + C'Y'"). (1.122) 

This expression describes the well-known Hanbury-Brown-Twiss effect, or 
photon bunching, for thermal light [l.23); at zero delay the correlation func­
tion has twice the value it has for long delays (-yr» 1). 

Note 1.6 The correlation time, 1/'Y, in (1.122) holds for filtered thermal 
light in accord with the comments in Note 1.5. 

..,.. _ .__ 
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